Cofiniteness of Local Cohomology Modules over Homomorphic Image of Cohen-Macaulay Rings

被引:0
|
作者
Farokhi A. [1 ]
Nazari A. [1 ]
机构
[1] Faculty of Mathematical Sciences, Lorestan University, Khorram Abad
关键词
Cofinite modules; Local cohomology; Weakly Laskerian modules;
D O I
10.1007/s40306-018-0246-3
中图分类号
学科分类号
摘要
Let (R, 𝔪m) be a Noetherian local ring, M a non-zero finitely generated R-module, and let I be an ideal of R. In this paper, we establish some new properties of local cohomology modules HIi(M), i ≥ 0. In particular, we show that if R is catenary, M an equidimensional R-module of dimension d, and x1, x2, … , xt is an I-filter regular sequence on M, then (0:HId−j(M〈x1,x2,…,xi−1〉M)xi) is I-cofinite for all i= 1 , 2 , … , t and all i ≤ j ≤ t if and only if HId−j(M〈x1,x2,…,xi−1〉M) is I-cofinite for all i= 1 , 2 , … , t and all i ≤ j ≤ t. Also we study the cofiniteness of local cohomology modules over homomorphic image of Cohen-Macaulay rings and we show that HIW(I,M)(M)IHIW(I,M)(M) has finite support, where W(I,M):=Max{i:HIi(M)is not weakly Laskerian}. © 2018, Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd.
引用
收藏
页码:565 / 574
页数:9
相关论文
共 50 条
  • [41] RANKS OF INDECOMPOSABLE MODULES OVER RINGS OF INFINITE COHEN-MACAULAY TYPE
    Crabbe, Andrew
    Saccon, Silvia
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (08) : 2957 - 2977
  • [42] Gorenstein Injective Filtrations Over Cohen-Macaulay Rings with Dualizing Modules
    Feickert, Aaron J.
    Sather-Wagstaff, Sean
    ALGEBRAS AND REPRESENTATION THEORY, 2019, 22 (02) : 297 - 319
  • [43] Hilbert-Samuel functions of modules over Cohen-Macaulay rings
    Iyengar, Srikanth
    Puthenpurakal, Tony J.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (03) : 637 - 648
  • [44] Gorenstein Injective Filtrations Over Cohen-Macaulay Rings with Dualizing Modules
    Aaron J. Feickert
    Sean Sather-Wagstaff
    Algebras and Representation Theory, 2019, 22 : 297 - 319
  • [45] ON THE VANISHING OF SELF EXTENSIONS OVER COHEN-MACAULAY LOCAL RINGS
    Araya, Tokuji
    Celikbas, Olgur
    Sadeghi, Arash
    Takahashi, Ryo
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (11) : 4563 - 4570
  • [46] Syzygies of Cohen–Macaulay Modules over One Dimensional Cohen–Macaulay Local Rings
    Toshinori Kobayashi
    Algebras and Representation Theory, 2022, 25 : 1061 - 1070
  • [47] On the structure of Cohen-Macaulay modules over hypersurfaces of countable Cohen-Macaulay representation type
    Araya, Tokuji
    Iima, Kei-ichiro
    Takahashi, Ryo
    JOURNAL OF ALGEBRA, 2012, 361 : 213 - 224
  • [48] Cohen-Macaulay test ideals over rings of finite and countable Cohen-Macaulay type
    Benali, Julian
    Pothagoni, Shrunal
    Rebecca, R. G.
    INVOLVE, A JOURNAL OF MATHEMATICS, 2021, 14 (03): : 413 - 430
  • [49] Local Cohen-Macaulay DG-Modules
    Yang, Xiaoyan
    Li, Yanjie
    APPLIED CATEGORICAL STRUCTURES, 2023, 31 (01)
  • [50] Hilbert Functions of Cohen-Macaulay local rings
    Rossi, Maria Evelina
    COMMUTATIVE ALGEBRA AND ITS CONNECTIONS TO GEOMETRY, 2011, 555 : 173 - 200