A mixed finite element method with reduced symmetry for the standard model in linear viscoelasticity

被引:0
|
作者
Gabriel N. Gatica
Antonio Márquez
Salim Meddahi
机构
[1] Universidad de Concepción,CI2MA and Departamento de Ingeniería Matemática
[2] Universidad de Oviedo,Departamento de Construcción e Ingeniería de Fabricación
[3] Universidad de Oviedo,Departamento de Matemáticas, Facultad de Ciencias
来源
Calcolo | 2021年 / 58卷
关键词
Mixed finite elements; Elastodynamics; Error estimates; 65N30; 65M12; 65M15; 74H15;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce and analyze a new mixed finite element method with reduced symmetry for the standard linear model in viscoelasticity. Following a previous approach employed for linear elastodynamics, the present problem is formulated as a second-order hyperbolic partial differential equation in which, after using the motion equation to eliminate the displacement unknown, the stress tensor remains as the main variable to be found. The resulting variational formulation is shown to be well-posed, and a class of H(div)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {H}(\text {div})$$\end{document}-conforming semi-discrete schemes is proved to be convergent. Then, we use the Newmark trapezoidal rule to obtain an associated fully discrete scheme, whose main convergence results are also established. Finally, numerical examples illustrating the performance of the method are reported.
引用
收藏
相关论文
共 50 条
  • [31] ANALYSIS OF A NON-STANDARD MIXED FINITE ELEMENT METHOD WITH APPLICATIONS TO SUPERCONVERGENCE
    Brandts, Jan H.
    APPLICATIONS OF MATHEMATICS, 2009, 54 (03) : 225 - 235
  • [32] Analysis of a non-standard mixed finite element method with applications to superconvergence
    Jan H. Brandts
    Applications of Mathematics, 2009, 54 : 225 - 235
  • [33] FINITE ELEMENT METHOD FOR SOLVING THE COLLECTIVE NUCLEAR MODEL WITH TETRAHEDRAL SYMMETRY
    Gusev, A. A.
    Vinitsky, S. I.
    Chuluunbaatar, O.
    Gozdz, A.
    Dobrowolski, A.
    Mazurek, K.
    Krassovitskiy, P. M.
    ACTA PHYSICA POLONICA B PROCEEDINGS SUPPLEMENT, 2019, 12 (03) : 589 - 594
  • [34] Efficient Expanded Mixed Finite Element Method for the Forchheimer Model
    Li, Yanping
    Zhao, Qingli
    ADVANCES IN INTERNET, DATA & WEB TECHNOLOGIES, 2018, 17 : 818 - 827
  • [35] MIXED FINITE-ELEMENT METHOD CLOSE TO EQUILIBRIUM MODEL
    HASLINGER, J
    HLAVACEK, I
    NUMERISCHE MATHEMATIK, 1976, 26 (01) : 85 - 97
  • [36] Enriched two dimensional mixed finite element models for linear elasticity with weak stress symmetry
    Devloo, Philippe R.B.
    Gomes, Sônia M.
    Quinelato, Thiago O.
    Tian, Shudan
    Computers and Mathematics with Applications, 2020, 79 (09): : 2678 - 2700
  • [37] Enriched two dimensional mixed finite element models for linear elasticity with weak stress symmetry
    Devloo, Philippe R. B.
    Gomes, Sonia M.
    Quinelato, Thiago O.
    Tian, Shudan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (09) : 2678 - 2700
  • [38] Error estimates for mixed finite element approximations of the viscoelasticity wave equation
    Gao, LP
    Liang, D
    Zhang, B
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2004, 27 (17) : 1997 - 2016
  • [39] An Improved Model Updating Method of Reduced-Models for Finite Element Model
    李伟明
    洪嘉振
    Journal of Shanghai Jiaotong University(Science), 2010, 15 (03) : 377 - 384
  • [40] An improved model updating method of reduced-models for finite element model
    Li W.-M.
    Hong J.-Z.
    Journal of Shanghai Jiaotong University (Science), 2010, 15 (03) : 377 - 384