A framework for self-supervised federated domain adaptation

被引:0
|
作者
Bin Wang
Gang Li
Chao Wu
WeiShan Zhang
Jiehan Zhou
Ye Wei
机构
[1] China University of Petroleum (East),College of Computer Science and Technology
[2] ZheJiang University,School of Public Affairs
[3] University of Oulu,undefined
[4] Suzhou Tongji Blockchain Research Institute,undefined
关键词
Domain adaptation; Distributed system; Self-supervised; Federated learning;
D O I
暂无
中图分类号
学科分类号
摘要
Unsupervised federated domain adaptation uses the knowledge from several distributed unlabelled source domains to complete the learning on the unlabelled target domain. Some of the existing methods have limited effectiveness and involve frequent communication. This paper proposes a framework to solve the distributed multi-source domain adaptation problem, referred as self-supervised federated domain adaptation (SFDA). Specifically, a multi-domain model generalization balance is proposed to aggregate the models from multiple source domains in each round of communication. A weighted strategy based on centroid similarity is also designed for SFDA. SFDA conducts self-supervised training on the target domain to tackle domain shift. Compared with the classical federated adversarial domain adaptation algorithm, SFDA is not only strong in communication cost and privacy protection but also improves in the accuracy of the model.
引用
收藏
相关论文
共 50 条
  • [31] Self-supervised domain adaptation for machinery remaining useful life prediction
    Le Xuan, Quy
    Munderloh, Marco
    Ostermann, Joern
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 250
  • [32] Self-Supervised Domain Adaptation for 6DoF Pose Estimation
    Jin, Juseong
    Jeong, Eunju
    Cho, Joonmyun
    Kim, Young-Gon
    IEEE ACCESS, 2024, 12 : 101528 - 101535
  • [33] Federated Self-supervised Learning for Video Understanding
    Rehman, Yasar Abbas Ur
    Gao, Yan
    Shen, Jiajun
    de Gusmao, Pedro Porto Buarque
    Lane, Nicholas
    COMPUTER VISION, ECCV 2022, PT XXXI, 2022, 13691 : 506 - 522
  • [34] A Reference-free Self-supervised Domain Adaptation Framework for Low-quality Fundus Image Enhancement
    Hou, Qingshan
    Cao, Peng
    Wang, Jiaqi
    Liu, Xiaoli
    Yang, Jinzhu
    Zaiane, Osmar R.
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 7383 - 7393
  • [35] FGSS: Federated global self-supervised framework for large-scale unlabeled data
    Zhang, Chen
    Xie, Zixuan
    Yu, Bin
    Wen, Chao
    Xie, Yu
    APPLIED SOFT COMPUTING, 2023, 143
  • [36] Plugging Self-Supervised Monocular Depth into Unsupervised Domain Adaptation for Semantic Segmentation
    Cardace, Adriano
    De Luigi, Luca
    Ramirez, Pierluigi Zama
    Salti, Samuele
    Di Stefano, Luigi
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 1999 - 2009
  • [37] Cuepervision: self-supervised learning for continuous domain adaptation without catastrophic forgetting
    Schutera, Mark
    Hafner, Frank M.
    Abhau, Jochen
    Hagenmeyer, Veit
    Mikut, Ralf
    Reischl, Markus
    IMAGE AND VISION COMPUTING, 2021, 106
  • [38] Domain Adaptation With Self-Supervised Learning and Feature Clustering for Intelligent Fault Diagnosis
    Lu, Nannan
    Xiao, Hanhan
    Ma, Zhanguo
    Yan, Tong
    Han, Min
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (06) : 7657 - 7670
  • [39] Self-supervised learning minimax entropy domain adaptation for the underwater target recognition
    Yang, Jirui
    Yan, Shefeng
    Zeng, Di
    Tan, Gang
    APPLIED ACOUSTICS, 2024, 216
  • [40] SSTN: Self-Supervised Domain Adaptation Thermal Object Detection for Autonomous Driving
    Munir, Farzeen
    Azam, Shoaib
    Jeon, Moongu
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 206 - 213