Study of a Solar-Blind Photodetector Based on an IZTO/β-Ga2O3/ITO Schottky Diode

被引:0
|
作者
Rima Cherroun
Afak Meftah
Madani Labed
Nouredine Sengouga
Amjad Meftah
Hojoong Kim
You Seung Rim
机构
[1] University of Biskra,Laboratory of Semiconducting and Metallic Materials (LMSM)
[2] Sejong University,Department of Intelligent Mechatronics Engineering and Convergence Engineering for Intelligent Drone
来源
关键词
IZTO/β-Ga; O; solar-blind photodetector; persistent photoconductivity; passivation; simulation; traps;
D O I
暂无
中图分类号
学科分类号
摘要
An InZnSnO2 (IZTO)/β-Ga2O3 solar blind Schottky barrier diode photodetector (PhD) exposed to 255 nm, 385 nm and 500 nm light wavelengths was simulated and compared with measurement. The measured dark photocurrent at reverse bias and responsivity were successfully reproduced by numerical simulation by considering several factors such as conduction mechanisms and material parameters. Further optimizations based on reducing trap densities and insertion of a 50-nm Al0.39Ga0.612O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\left({\mathrm{Al}}_{0.39}{\mathrm{Ga}}_{0.61}\right)}_{2}{\mathrm{O}}_{3}$$\end{document} passivation layer between IZTO and β-Ga2O3 are carried out. The effect of reducing bulk traps densities on the photocurrent, responsivity and time-dependent photoresponse (persistent conductivity) were studied. With decreasing traps densities, the photocurrent increased. Responsivity reached 0.04 A/W for low β-Ga2O3 trap densities. The decay time estimated for the lowest ET(0.74,1.04eV)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E}_{{T}}\; (0.74, 1.04\; \mathrm{eV})$$\end{document} densities is ∼0.05s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 0.05\; \mathrm{s}$$\end{document} and is shorter at ∼0.015s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 0.015\; \mathrm{s}$$\end{document} for ET(0.55eV)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E}_{{T}}\; (0.55\; \mathrm{eV})$$\end{document}. This indicates that the shallowest traps had the dominant influence (ET=0.55eV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E}_{{T}}=0.55\; \mathrm{eV}$$\end{document}) on the persistent photoconductivity phenomenon. Furthermore, with decreasing trap densities, this PhD can be considered as a self-powered solar-blind photodiode (SBPhD). The insertion of a Al0.39Ga0.612O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\left({\mathrm{Al}}_{0.39}{\mathrm{Ga}}_{0.61}\right)}_{2}{\mathrm{O}}_{3}$$\end{document} passivation layer increases the photocurrent which is related to a recombination decrease and the photogenerated carrier increase, and hence the increase of the internal quantum efficiency.
引用
收藏
页码:1448 / 1460
页数:12
相关论文
共 50 条
  • [31] ε-Ga2O3 solar-blind photodetector: Pyroelectric effect and flame sensing application
    Zhou, Chang
    Wang, Jipeng
    Shu, Lincong
    Hu, Ji
    Xi, Zhaoying
    Li, Shan
    Tang, Weihua
    VACUUM, 2025, 234
  • [32] Influence of deposition temperature on amorphous Ga2O3 solar-blind ultraviolet photodetector
    Zhu, Wenhui
    Xiong, Lingxing
    Si, Jiawei
    Hu, Zelin
    Gao, Xiang
    Long, Linyun
    Li, Tao
    Wan, Rongqiao
    Zhang, Lei
    Wang, Liancheng
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2020, 35 (05)
  • [33] Review of β-Ga2O3 solar-blind ultraviolet photodetector: growth, device, and application
    Chen, Hao
    Li, Zhe
    Zhang, Zeyulin
    Liu, Dinghe
    Zeng, Liru
    Yan, Yiru
    Chen, Dazheng
    Feng, Qian
    Zhang, Jincheng
    Hao, Yue
    Zhang, Chunfu
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2024, 39 (06)
  • [34] Fast-response self-powered solar-blind photodetector based on Pt/β-Ga2O3 Schottky barrier diodes
    Peng, Bo
    Yuan, Lei
    Zhang, Hongpeng
    Cheng, Hongjuan
    Zhang, Shengnan
    Zhang, Yimen
    Zhang, Yuming
    Jia, Renxu
    OPTIK, 2021, 245
  • [35] Zero-Power-Consumption Solar-Blind Photodetector Based on β-Ga2O3/NSTO Heterojunction
    Guo, Daoyou
    Liu, Han
    Li, Peigang
    Wu, Zhenping
    Wang, Shunli
    Cui, Can
    Li, Chaorong
    Tang, Weihua
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (02) : 1619 - 1628
  • [36] β-Ga2O3 Solar-Blind Deep-Ultraviolet Photodetector Based on Annealed Sapphire Substrate
    Qian, L. X.
    Xia, Y.
    Wu, Z. H.
    Sheng, T.
    Liu, X. Z.
    Zhang, W. L.
    Li, Y. R.
    7TH IEEE INTERNATIONAL NANOELECTRONICS CONFERENCE (INEC) 2016, 2016,
  • [37] Ti3C2/ε-Ga2O3 Schottky Self-Powered Solar-Blind Photodetector With Robust Responsivity
    Yan, Zu-Yong
    Li, Shan
    Liu, Zeng
    Liu, Wen-Jie
    Qiao, Fen
    Li, Pei-Gang
    Tang, Xiao
    Li, Xiao-Hang
    Yue, Jian-Ying
    Guo, Yu-Feng
    Tang, Wei-Hua
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2022, 28 (02)
  • [38] A Highly Transparent β-Ga2O3 Thin Film-Based Photodetector for Solar-Blind Imaging
    He, Miao
    Zeng, Qing
    Ye, Lijuan
    CRYSTALS, 2023, 13 (10)
  • [39] Solar-blind ultraviolet photodetector based on graphene/vertical Ga2O3 nanowire array heterojunction
    He, Tao
    Zhao, Yukun
    Zhang, Xiaodong
    Lin, Wenkui
    Fu, Kai
    Sun, Chi
    Shi, Fengfeng
    Ding, Xiaoyu
    Yu, Guohao
    Zhang, Kai
    Lu, Shulong
    Zhang, Xinping
    Zhang, Baoshun
    NANOPHOTONICS, 2018, 7 (09) : 1557 - 1562
  • [40] High responsivity solar-blind metal-semiconductor-metal photodetector based on α-Ga2O3
    Bae, Jinho
    Jeon, Dae-Woo
    Park, Ji-Hyeon
    Kim, Jihyun
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2021, 39 (03):