Quantum Secret Sharing Protocol Using Maximally Entangled Multi-qudit States

被引:0
|
作者
M. Mansour
Z. Dahbi
机构
[1] Department of Physics,LHEP
[2] Faculty of Sciences Aïn ChockUniversity of Hassan II,Modeling and Simulation, Faculty of Sciences
[3] Mohammed V University,undefined
关键词
Multi-qudit systems; Maximally entangled states; Quantum secret sharing;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this paper is to develop a (N − k) threshold quantum secret sharing (QSS) scheme by using entangled multi-qudit states shared between N qudits such that (k ≤ N − k). We introduce first multi-qudit separable states of a Hilbert space associated with a disconnected multi-qudit system. The entangled multi-qudit states are obtained from disconnected states by means of a unitary interaction operator governing the evolution of the multi-qudit system, where the pairwise interaction establishes links between qudits. The generated entangled states are chosen to be maximally entangled with respect to a specific bi-partition (A2⋃A1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A_{2} \bigcup A_{1} $\end{document}) with k = |A2|≤|A1| = (N − k) of the whole system such that the von Neumann entropy S(ρA2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S(\rho _{A_{2}})$\end{document} is maximal. The maximally entanglement property with respect to the splitting (A2⋃A1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A_{2} \bigcup A_{1} $\end{document}) of this N-qudit entangled states will be used by a dealer (D) to share an encoded quantum secret with (N − 1) other players, such that at least the (N − k) specified players belonging to A1 have to cooperate jointly to get the complete information about the secret.
引用
收藏
页码:3876 / 3887
页数:11
相关论文
共 50 条
  • [21] Standard (3, 5)-threshold quantum secret sharing by maximally entangled 6-qubit states
    Yinxiang Long
    Cai Zhang
    Zhiwei Sun
    Scientific Reports, 11
  • [22] A Novel Efficient Multiparty Semi-Quantum Secret Sharing Protocol Using Entangled States for Sharing Specific Bits
    Younes, Mustapha Anis
    Zebboudj, Sofia
    Gharbi, Abdelhakim
    arXiv,
  • [23] A Lightweight and Efficient Multiparty Semi-Quantum Secret Sharing Protocol Using Entangled States for Sharing Specific Bit
    Younes, Mustapha Anis
    Zebboudj, Sofia
    Gharbi, Abdelhakim
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2024, 63 (11)
  • [24] Controlled teleportation of multi-qudit quantum information
    Zhan Xiao-Guig
    Li Hong-Mei
    Ji Hua
    Zeng Hao-Sheng
    CHINESE PHYSICS, 2007, 16 (10): : 2880 - 2884
  • [25] Security of a kind of quantum secret sharing with entangled states
    Tian-Yin Wang
    Ying-Zhao Liu
    Chun-Yan Wei
    Xiao-Qiu Cai
    Jian-Feng Ma
    Scientific Reports, 7
  • [26] Security of a kind of quantum secret sharing with entangled states
    Wang, Tian-Yin
    Liu, Ying-Zhao
    Wei, Chun-Yan
    Cai, Xiao-Qiu
    Ma, Jian-Feng
    SCIENTIFIC REPORTS, 2017, 7
  • [27] Semiquantum secret sharing using entangled states
    Li, Qin
    Chan, W. H.
    Long, Dong-Yang
    PHYSICAL REVIEW A, 2010, 82 (02):
  • [28] Improvement on “Quantum Key Agreement Protocol with Maximally Entangled States”
    Song-Kong Chong
    Chia-Wei Tsai
    Tzonelih Hwang
    International Journal of Theoretical Physics, 2011, 50 : 1793 - 1802
  • [29] Improvement on "Quantum Key Agreement Protocol with Maximally Entangled States"
    Chong, Song-Kong
    Tsai, Chia-Wei
    Hwang, Tzonelih
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (06) : 1793 - 1802
  • [30] Hilbert–Schmidt quantum coherence in multi-qudit systems
    Jonas Maziero
    Quantum Information Processing, 2017, 16