Quantum Secret Sharing Protocol Using Maximally Entangled Multi-qudit States

被引:0
|
作者
M. Mansour
Z. Dahbi
机构
[1] Department of Physics,LHEP
[2] Faculty of Sciences Aïn ChockUniversity of Hassan II,Modeling and Simulation, Faculty of Sciences
[3] Mohammed V University,undefined
关键词
Multi-qudit systems; Maximally entangled states; Quantum secret sharing;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this paper is to develop a (N − k) threshold quantum secret sharing (QSS) scheme by using entangled multi-qudit states shared between N qudits such that (k ≤ N − k). We introduce first multi-qudit separable states of a Hilbert space associated with a disconnected multi-qudit system. The entangled multi-qudit states are obtained from disconnected states by means of a unitary interaction operator governing the evolution of the multi-qudit system, where the pairwise interaction establishes links between qudits. The generated entangled states are chosen to be maximally entangled with respect to a specific bi-partition (A2⋃A1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A_{2} \bigcup A_{1} $\end{document}) with k = |A2|≤|A1| = (N − k) of the whole system such that the von Neumann entropy S(ρA2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S(\rho _{A_{2}})$\end{document} is maximal. The maximally entanglement property with respect to the splitting (A2⋃A1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A_{2} \bigcup A_{1} $\end{document}) of this N-qudit entangled states will be used by a dealer (D) to share an encoded quantum secret with (N − 1) other players, such that at least the (N − k) specified players belonging to A1 have to cooperate jointly to get the complete information about the secret.
引用
收藏
页码:3876 / 3887
页数:11
相关论文
共 50 条
  • [1] Quantum Secret Sharing Protocol Using Maximally Entangled Multi-qudit States
    Mansour, M.
    Dahbi, Z.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (12) : 3876 - 3887
  • [2] Teleportation of multi-qudit entangled states
    Zhan, Xiao-Gui
    Li, Hong-Mei
    Zeng, Hao-Sheng
    CHINESE PHYSICS LETTERS, 2006, 23 (11) : 2900 - 2902
  • [3] Constructing multipartite planar maximally entangled states from phase states and quantum secret sharing protocol
    Bouhouch, L.
    Dakir, Y.
    Slaoui, A.
    Laamara, R. Ahl
    EUROPEAN PHYSICAL JOURNAL PLUS, 2025, 140 (02):
  • [4] Quantum state sharing of arbitrary known multi-qubit and multi-qudit states
    Wang, Ming-Ming
    Chen, Xiu-Bo
    Chen, Jin-Guang
    Yang, Yi-Xian
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2014, 12 (03)
  • [5] Quantum secret sharing with qudit graph states
    Keet, Adrian
    Fortescue, Ben
    Markham, Damian
    Sanders, Barry C.
    PHYSICAL REVIEW A, 2010, 82 (06):
  • [6] k-uniform maximally mixed states from multi-qudit phase states
    Mansour, Mostafa
    Daoud, Mohammed
    MODERN PHYSICS LETTERS A, 2019, 34 (19)
  • [7] Remote preparation of a qudit using maximally entangled states of qubits
    Yu, CS
    Song, HS
    Wang, YH
    PHYSICAL REVIEW A, 2006, 73 (02):
  • [8] New Quantum Secret Sharing Protocol Using Entangled Qutrits
    Vasiliu, Yevhen
    Limar, Igor
    Gancarczyk, Tomasz
    Karpinski, Mikolaj
    PROCEEDINGS OF THE 2019 10TH IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT DATA ACQUISITION AND ADVANCED COMPUTING SYSTEMS - TECHNOLOGY AND APPLICATIONS (IDAACS), VOL. 1, 2019, : 324 - 329
  • [9] Quantum secret sharing using orthogonal multiqudit entangled states
    Chen-Ming Bai
    Zhi-Hui Li
    Cheng-Ji Liu
    Yong-Ming Li
    Quantum Information Processing, 2017, 16
  • [10] Quantum secret sharing using orthogonal multiqudit entangled states
    Bai, Chen-Ming
    Li, Zhi-Hui
    Liu, Cheng-Ji
    Li, Yong-Ming
    QUANTUM INFORMATION PROCESSING, 2017, 16 (12)