DIFFERENCE AND PRIMITIVE OPERATORS ON THE DUNKL-TYPE FOCK SPACE Fα(Cd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {F}_{\alpha }(\mathbb {C}^{d})$$\end{document}

被引:0
|
作者
Fethi Soltani
Meriem Nenni
机构
[1] University of Tunis El Manar,Faculty of Sciences of Tunis, Laboratory of Mathematical Analysis and Applications LR11ES11
[2] University of Carthage,National Engineering School of Carthage
关键词
Dunkl-type Fock space; Reproducing kernel; Difference operator; Primitive operator; 32A15; 46C05;
D O I
10.1007/s10958-022-06172-5
中图分类号
学科分类号
摘要
In 1961, Bargmann introduced the classical Fock space F(Cd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {F}(\mathbb {C}^{d})$$\end{document} and in 1984, Cholewinsky introduced the generalized Fock space Fα,e(Cd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {F}_{\alpha ,e}(\mathbb {C}^{d})$$\end{document}. These two spaces are the aim of many works, and have many applications in mathematics, in physics, and in quantum mechanics. In this work, we introduce and study the Fock space Fα(Cd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {F}_{\alpha }(\mathbb {C}^{d})$$\end{document} associated to the Dunkl operators Tαj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\alpha _{j}}$$\end{document} with αj>-1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{j}>-1/2$$\end{document} for all j=1,…,d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j=1,\ldots ,d$$\end{document}. This space is an extension of the Dunkl-type Fock space Fα(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {F}_{\alpha }(\mathbb {C})$$\end{document} constructed by Sifi and Soltani in 2002. We prove that the space Fα(Cd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {F}_{\alpha }(\mathbb {C}^{d})$$\end{document} is a Hilbert space with reproducing kernel. Next, we give an application of the classical theory of reproducing kernels to the Tikhonov regularization problem for the bounded linear operator L:Fα(Cd)→H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {L}:\mathscr {F}_{\alpha }(\mathbb {C}^{d})\rightarrow \mathscr {H}$$\end{document}, where H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {H}$$\end{document} is a Hilbert space. Finally, we come up with some results regarding the extremal functions, when L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {L}$$\end{document} is the difference operator and the primitive operator, respectively.
引用
收藏
页码:917 / 932
页数:15
相关论文
共 50 条