Least-squares solutions of generalized inverse eigenvalue problem over Hermitian–Hamiltonian matrices with a submatrix constraint

被引:0
|
作者
Jing Cai
Jianlong Chen
机构
[1] Huzhou University,School of Science
[2] Southeast University,Department of Mathematics
来源
关键词
Generalized inverse eigenvalue problem; Hermitian–Hamiltonian matrix; Submatrix constraint; Optimal approximation; 15A29; 65J22;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a gradient-based iterative algorithm is proposed for finding the least-squares solutions of the following constrained generalized inverse eigenvalue problem: given X∈Cn×m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X\in C^{n\times m}$$\end{document}, Λ=diag(λ1,λ2,…,λm)∈Cm×m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda =\mathrm{diag}(\lambda _1,\lambda _2,\ldots ,\lambda _m)\in C^{m\times m}$$\end{document}, find A∗,B∗∈Cn×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^*,B^*\in C^{n\times n}$$\end{document}, such that ‖AX-BXΛ‖\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert AX-BX\Lambda \Vert $$\end{document} is minimized, where A∗,B∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^*,B^*$$\end{document} are Hermitian–Hamiltonian except for a special submatrix. For any initial constrained matrices, a solution pair (A∗,B∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(A^*,B^*)$$\end{document} can be obtained in finite iteration steps by this iterative algorithm in the absence of roundoff errors. The least-norm solution can be obtained by choosing a special kind of initial matrix pencil. In addition, the unique optimal approximation solution to a given matrix pencil in the solution set of the above problem can also be obtained. A numerical example is given to show the efficiency of the proposed algorithm.
引用
收藏
页码:593 / 603
页数:10
相关论文
共 50 条
  • [41] Inverse eigenvalue problems for bisymmetric matrices under a central principal submatrix constraint
    Zhao, Lijun
    Hu, Xiyan
    Zhang, Lei
    LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (02): : 117 - 128
  • [42] GENERALIZED SOLUTIONS OF METHOD OF LEAST-SQUARES
    LEONOV, YP
    DOKLADY AKADEMII NAUK SSSR, 1972, 206 (01): : 37 - &
  • [43] Submatrix constrained left and right inverse eigenvalue problem for centrosymmetric matrices
    Zhao, Lijun
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2021, 29 (10) : 1412 - 1428
  • [44] Least–Squares Solution of Inverse Problem for Hermitian Anti–reflexive Matrices and Its Appoximation
    Zhen Yun Peng
    Yuan Bei Deng
    Jin Wang Liu
    Acta Mathematica Sinica, 2006, 22 : 477 - 484
  • [45] Approximation of the Maxwell eigenvalue problem in a least-squares setting
    Bertrand, Fleurianne
    Boffi, Daniele
    Gastaldi, Lucia
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 148 : 302 - 312
  • [46] LEAST-SQUARES COLLOCATION AND GRAVITATIONAL INVERSE PROBLEM
    MORITZ, H
    JOURNAL OF GEOPHYSICS-ZEITSCHRIFT FUR GEOPHYSIK, 1977, 43 (1-2): : 153 - 162
  • [47] Least squares solutions to AX=B for bisymmetric matrices under a central principal submatrix constraint and the optimal approximation
    Zhao, Lijun
    Hu, Xiyan
    Zhang, Lei
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (04) : 871 - 880
  • [48] Iterative solutions of generalized inverse eigenvalue problem for partially bisymmetric matrices
    Cai, Jing
    Chen, Jianlong
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (08): : 1643 - 1654
  • [49] Inverse problem for symmetric P-symmetric matrices with a submatrix constraint
    Li, Jiao-fen
    Hu, Xi-yan
    Zhang, Lei
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2010, 17 (04) : 661 - 674
  • [50] The Inverse Generalized Eigenvalue Problem for Generalized Antireflexive Matrices
    Yuan, Yandong
    ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL II: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 414 - 417