Least-squares solutions of generalized inverse eigenvalue problem over Hermitian–Hamiltonian matrices with a submatrix constraint

被引:0
|
作者
Jing Cai
Jianlong Chen
机构
[1] Huzhou University,School of Science
[2] Southeast University,Department of Mathematics
来源
关键词
Generalized inverse eigenvalue problem; Hermitian–Hamiltonian matrix; Submatrix constraint; Optimal approximation; 15A29; 65J22;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a gradient-based iterative algorithm is proposed for finding the least-squares solutions of the following constrained generalized inverse eigenvalue problem: given X∈Cn×m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X\in C^{n\times m}$$\end{document}, Λ=diag(λ1,λ2,…,λm)∈Cm×m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda =\mathrm{diag}(\lambda _1,\lambda _2,\ldots ,\lambda _m)\in C^{m\times m}$$\end{document}, find A∗,B∗∈Cn×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^*,B^*\in C^{n\times n}$$\end{document}, such that ‖AX-BXΛ‖\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert AX-BX\Lambda \Vert $$\end{document} is minimized, where A∗,B∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^*,B^*$$\end{document} are Hermitian–Hamiltonian except for a special submatrix. For any initial constrained matrices, a solution pair (A∗,B∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(A^*,B^*)$$\end{document} can be obtained in finite iteration steps by this iterative algorithm in the absence of roundoff errors. The least-norm solution can be obtained by choosing a special kind of initial matrix pencil. In addition, the unique optimal approximation solution to a given matrix pencil in the solution set of the above problem can also be obtained. A numerical example is given to show the efficiency of the proposed algorithm.
引用
收藏
页码:593 / 603
页数:10
相关论文
共 50 条