In this paper, a gradient-based iterative algorithm is proposed for finding the least-squares solutions of the following constrained generalized inverse eigenvalue problem: given X∈Cn×m\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$X\in C^{n\times m}$$\end{document}, Λ=diag(λ1,λ2,…,λm)∈Cm×m\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Lambda =\mathrm{diag}(\lambda _1,\lambda _2,\ldots ,\lambda _m)\in C^{m\times m}$$\end{document}, find A∗,B∗∈Cn×n\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$A^*,B^*\in C^{n\times n}$$\end{document}, such that ‖AX-BXΛ‖\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Vert AX-BX\Lambda \Vert $$\end{document} is minimized, where A∗,B∗\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$A^*,B^*$$\end{document} are Hermitian–Hamiltonian except for a special submatrix. For any initial constrained matrices, a solution pair (A∗,B∗)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(A^*,B^*)$$\end{document} can be obtained in finite iteration steps by this iterative algorithm in the absence of roundoff errors. The least-norm solution can be obtained by choosing a special kind of initial matrix pencil. In addition, the unique optimal approximation solution to a given matrix pencil in the solution set of the above problem can also be obtained. A numerical example is given to show the efficiency of the proposed algorithm.