A Linearized L1-Galerkin FEM for Non-smooth Solutions of Kirchhoff Type Quasilinear Time-Fractional Integro-Differential Equation

被引:0
|
作者
Lalit Kumar
Sivaji Ganesh Sista
Konijeti Sreenadh
机构
[1] Indian Institute of Technology Bombay,Department of Mathematics
[2] Indian Institute of Technology Delhi,Department of Mathematics
来源
关键词
Nonlocal; Finite element method (FEM); Fractional time derivatives; Integro-differential equation; Graded mesh; 34K30; 26A33; 65R10; 60K50;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we study the semi discrete and fully discrete formulations for a Kirchhoff type quasilinear integro-differential equation (Dα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {D}^{\alpha }$$\end{document}) involving time-fractional derivative of order α∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,1)$$\end{document}. For the semi discrete formulation of the equation (Dα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {D}^{\alpha }$$\end{document}), we discretize the space domain using a conforming FEM and keep the time variable continuous. We modify the standard Ritz–Volterra projection operator to carry out error analysis for the semi discrete formulation of the considered equation. In general, solutions of the time-fractional partial differential equations have a weak singularity near time t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=0$$\end{document}. Taking this singularity into account, we develop a new linearized fully discrete numerical scheme for the equation (Dα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {D}^{\alpha }$$\end{document}) on a graded mesh in time. We derive a priori bounds on the solution of this fully discrete numerical scheme using a new weighted H1(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{1}(\Omega )$$\end{document} norm. We prove that the developed numerical scheme has an accuracy rate of O(P-1+N-(2-α))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(P^{-1}+N^{-(2-\alpha )})$$\end{document} in L∞(0,T;L2(Ω))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }(0,T;L^{2}(\Omega ))$$\end{document} as well as in L∞(0,T;H01(Ω))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }(0,T;H^{1}_{0}(\Omega ))$$\end{document}, where P and N are degrees of freedom in the space and time directions respectively. The robustness and efficiency of the proposed numerical scheme are demonstrated by some numerical examples.
引用
收藏
相关论文
共 23 条