A Linearized L1-Galerkin FEM for Non-smooth Solutions of Kirchhoff Type Quasilinear Time-Fractional Integro-Differential Equation

被引:0
|
作者
Lalit Kumar
Sivaji Ganesh Sista
Konijeti Sreenadh
机构
[1] Indian Institute of Technology Bombay,Department of Mathematics
[2] Indian Institute of Technology Delhi,Department of Mathematics
来源
关键词
Nonlocal; Finite element method (FEM); Fractional time derivatives; Integro-differential equation; Graded mesh; 34K30; 26A33; 65R10; 60K50;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we study the semi discrete and fully discrete formulations for a Kirchhoff type quasilinear integro-differential equation (Dα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {D}^{\alpha }$$\end{document}) involving time-fractional derivative of order α∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,1)$$\end{document}. For the semi discrete formulation of the equation (Dα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {D}^{\alpha }$$\end{document}), we discretize the space domain using a conforming FEM and keep the time variable continuous. We modify the standard Ritz–Volterra projection operator to carry out error analysis for the semi discrete formulation of the considered equation. In general, solutions of the time-fractional partial differential equations have a weak singularity near time t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=0$$\end{document}. Taking this singularity into account, we develop a new linearized fully discrete numerical scheme for the equation (Dα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {D}^{\alpha }$$\end{document}) on a graded mesh in time. We derive a priori bounds on the solution of this fully discrete numerical scheme using a new weighted H1(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{1}(\Omega )$$\end{document} norm. We prove that the developed numerical scheme has an accuracy rate of O(P-1+N-(2-α))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(P^{-1}+N^{-(2-\alpha )})$$\end{document} in L∞(0,T;L2(Ω))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }(0,T;L^{2}(\Omega ))$$\end{document} as well as in L∞(0,T;H01(Ω))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }(0,T;H^{1}_{0}(\Omega ))$$\end{document}, where P and N are degrees of freedom in the space and time directions respectively. The robustness and efficiency of the proposed numerical scheme are demonstrated by some numerical examples.
引用
收藏
相关论文
共 23 条
  • [1] A Linearized L1-Galerkin FEM for Non-smooth Solutions of Kirchhoff Type Quasilinear Time-Fractional Integro-Differential Equation
    Kumar, Lalit
    Sista, Sivaji Ganesh
    Sreenadh, Konijeti
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 96 (02)
  • [2] A linearized L2-1σ Galerkin FEM for Kirchhoff type quasilinear subdiffusion equation with memory
    Kumar, Lalit
    Sista, Sivaji Ganesh
    Sreenadh, Konijeti
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 135
  • [3] Finite element analysis of time-fractional integro-differential equation of Kirchhoff type for non-homogeneous materials
    Kumar, Lalit
    Sista, Sivaji Ganesh
    Sreenadh, Konijeti
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (04) : 2120 - 2153
  • [4] Superconvergent results for fractional Volterra integro-differential equations with non-smooth solutions
    Ruby
    Mandal, Moumita
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 458
  • [5] A Compact Difference Scheme on Graded Meshes for the Nonlinear Fractional Integro-differential Equation with Non-smooth Solutions
    Da-kang Cen
    Zhi-bo Wang
    Yan Mo
    Acta Mathematicae Applicatae Sinica, English Series, 2022, 38 : 601 - 613
  • [6] A Compact Difference Scheme on Graded Meshes for the Nonlinear Fractional Integro-differential Equation with Non-smooth Solutions
    Da-kang CEN
    Zhi-bo WANG
    Yan MO
    Acta Mathematicae Applicatae Sinica, 2022, 38 (03) : 601 - 613
  • [7] A Compact Difference Scheme on Graded Meshes for the Nonlinear Fractional Integro-differential Equation with Non-smooth Solutions
    Cen, Dakang
    Wang, Zhibo
    Mo, Yan
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2022, 38 (03): : 601 - 613
  • [8] THE JACOBI SPECTRAL COLLOCATION METHOD FOR FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS WITH NON-SMOOTH SOLUTIONS
    Yang, Yin
    Kang, Sujuan
    Vasil'ev, Vasiliy, I
    ELECTRONIC RESEARCH ARCHIVE, 2020, 28 (03): : 1161 - 1189
  • [9] Linearized Galerkin FEMs for Nonlinear Time Fractional Parabolic Problems with Non-smooth Solutions in Time Direction
    Li, Dongfang
    Wu, Chengda
    Zhang, Zhimin
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (01) : 403 - 419
  • [10] Linearized Galerkin FEMs for Nonlinear Time Fractional Parabolic Problems with Non-smooth Solutions in Time Direction
    Dongfang Li
    Chengda Wu
    Zhimin Zhang
    Journal of Scientific Computing, 2019, 80 : 403 - 419