Generalized harmonic functions and Schwarz lemma for biharmonic mappings

被引:0
|
作者
Adel Khalfallah
Fathi Haggui
Mohamed Mhamdi
机构
[1] King Fahd University of Petroleum and Minerals,Department of Mathematics and Statistics
[2] Université de Monastir,Institut Préparatoire Aux Etudes d’Ingénieurs de Monastir (IPEIM)
[3] Université de Sousse,Ecole supérieure des Sciences et de la Technologie de Hammam Sousse (ESSTHS)
来源
关键词
Schwarz’s lemma; Boundary Schwarz’s lemma; Landau theorem; Biharmonic equations; -harmonic mappings; Primary 31A30; Secondary 31A05; 35J25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish some Schwarz type lemmas for mappings Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document} satisfying the inhomogeneous biharmonic Dirichlet problem Δ(Δ(Φ))=g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta (\Delta (\Phi )) = g$$\end{document} in D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb D}$$\end{document}, Φ=f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi =f$$\end{document} on T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb T}$$\end{document} and ∂nΦ=h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial _n \Phi =h$$\end{document} on T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb T}$$\end{document}, where g is a continuous function on D¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{{\mathbb D}}$$\end{document}, f, h are continuous functions on T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb T}$$\end{document}, where D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb D}$$\end{document} is the unit disc of the complex plane C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb C}$$\end{document} and T=∂D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb T}=\partial {\mathbb D}$$\end{document} is the unit circle. To reach our aim, we start by investigating some properties of generalized harmonic functions called Tα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_\alpha $$\end{document}-harmonic functions. Finally, we prove a Landau-type theorem for this class of functions, when α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document}.
引用
收藏
页码:823 / 849
页数:26
相关论文
共 50 条
  • [41] DISTANCE HOLOMORPHIC MAPPINGS AND SCHWARZ LEMMA
    KOBAYASHI, S
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1967, 19 (04) : 481 - +
  • [42] Compositions of harmonic mappings and biharmonic mappings
    Chen, Shaolin
    Ponnusamy, Saminathan
    Wang, Xiantao
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2010, 17 (04) : 693 - 704
  • [43] EXTREMAL MAPPINGS FOR THE SCHWARZ-LEMMA
    DINEEN, S
    TIMONEY, RM
    ARKIV FOR MATEMATIK, 1992, 30 (01): : 61 - 81
  • [44] Schwarz lemma and Schwarz-Pick lemma for solutions of the α-harmonic equation ☆
    Li, Ming
    Ma, Xiu-Shuang
    Wang, Li-Mei
    BULLETIN DES SCIENCES MATHEMATIQUES, 2025, 201
  • [45] Schwarz Type Lemmas for Generalized Harmonic Functions
    Adel Khalfallah
    Mohamed Mhamdi
    Bulletin of the Malaysian Mathematical Sciences Society, 2024, 47
  • [46] Schwarz Type Lemmas for Generalized Harmonic Functions
    Khalfallah, Adel
    Mhamdi, Mohamed
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (02)
  • [47] Norm estimates of the partial derivatives and Schwarz lemma for a-harmonic functions
    Khalfallah, Adel
    Mateljevic, Miodrag
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024, 69 (07) : 1182 - 1194
  • [48] A generalized Schwarz lemma at the boundary
    Chelst, D
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (11) : 3275 - 3278
  • [49] BOUNDARY SCHWARZ LEMMA FOR SOLUTIONS TO NONHOMOGENEOUS BIHARMONIC EQUATIONS
    Mohapatra, Manas Ranjan
    Wang, Xiantao
    Zhu, Jian-Feng
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2019, 100 (03) : 470 - 478
  • [50] A Boundary Schwarz Lemma for Holomorphic Mappings on the Polydisc
    Liu, Yang
    Chen, Zhihua
    Pan, Yifei
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2018, 39 (01) : 9 - 16