Intuitive control of self-propelled microjets with haptic feedback

被引:18
|
作者
Pacchierotti C. [1 ]
Magdanz V. [2 ]
Medina-Sánchez M. [2 ]
Schmidt O.G. [2 ,3 ]
Prattichizzo D. [1 ,4 ]
Misra S. [5 ,6 ]
机构
[1] Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genova
[2] Institute for Integrative Nanosciences, IFW Dresden, Dresden
[3] Material Systems for Nanoelectronics, University of Technology Chemnitz, Chemnitz
[4] Department of Information Engineering and Mathematics, University of Siena, Siena
[5] Surgical Robotics Laboratory, Department of Biomechanical Engineering, MIRA - Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede
[6] Department of Biomedical Engineering, University of Groningen and University Medical Centre Groningen, Groningen
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
Actuators; Haptics; Microtechnology; Robotics; Teleoperation;
D O I
10.1007/s12213-015-0082-7
中图分类号
学科分类号
摘要
Self-propelled microrobots have recently shown promising results in several scenarios at the microscale, such as targeted drug delivery and micromanipulation of cells. However, none of the steering systems available in the literature enable humans to intuitively and effectively control these microrobots in the remote environment, which is a desirable feature. In this paper we present an innovative teleoperation system with force reflection that enables a human operator to intuitively control the positioning of a self-propelled microjet. A particle-filter-based visual tracking algorithm tracks at runtime the position of the microjet in the remote environment. A 6-degrees-of-freedom haptic interface then provides the human operator with compelling haptic feedback about the interaction between the controlled microjet and the environment, as well as enabling the operator to intuitively control the target position of the microjet. Finally, a wireless magnetic control system regulates the orientation of the microjet to reach the target point. The viability of the proposed approach is demonstrated through two experimentsz enrolling twenty-eight subjects. In both experiments providing haptic feedback significantly improved the performance and the perceived realism of the considered tasks. © 2015, Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:37 / 53
页数:16
相关论文
共 50 条
  • [31] Deformable Self-Propelled Particles
    Ohta, Takao
    Ohkuma, Takahiro
    PHYSICAL REVIEW LETTERS, 2009, 102 (15)
  • [32] A SELF-PROPELLED PLOT COMBINE
    LILJEDAHL, JB
    HANCOCK, NI
    BUTLER, JL
    AGRONOMY JOURNAL, 1951, 43 (10) : 516 - 517
  • [33] Development of a self-propelled microflotilla
    Hao Li
    Cheng Luo
    Microsystem Technologies, 2011, 17 : 777 - 786
  • [34] Self-propelled torus colloids
    Wang, Jiyuan
    Huang, Mu-Jie
    Kapral, Raymond
    JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (01):
  • [35] Self-Propelled Polymer Nanomotors
    Tao, Yu-Guo
    Kapral, Raymond
    CHEMPHYSCHEM, 2009, 10 (05) : 770 - 773
  • [36] Macroscopic Self-Propelled Objects
    Zhao, Guanjia
    Pumera, Martin
    CHEMISTRY-AN ASIAN JOURNAL, 2012, 7 (09) : 1994 - 2002
  • [37] A self-propelled thermophoretic microgear
    Yang, Mingcheng
    Ripoll, Marisol
    SOFT MATTER, 2014, 10 (07) : 1006 - 1011
  • [38] Synthetic self-propelled nanorotors
    Fournier-Bidoz, S
    Arsenault, AC
    Manners, I
    Ozin, GA
    CHEMICAL COMMUNICATIONS, 2005, (04) : 441 - 443
  • [39] DEVELOPMENT OF SELF-PROPELLED AERATORS
    KHUDENKO, BM
    JOURNAL OF ENVIRONMENTAL ENGINEERING-ASCE, 1983, 109 (04): : 868 - 885
  • [40] VACS + SELF-PROPELLED EUREKAS
    不详
    NEW YORKER, 1979, 55 (20) : 23 - 24