The isentropic quantum drift-diffusion model in two or three space dimensions

被引:0
|
作者
Xiuqing Chen
机构
[1] Beijing University of Posts and Telecommunications,School of Sciences
关键词
Quantum drift-diffusion; fourth order parabolic system; weak solution; semiclassical limit; 35k35; 35J60; 65M12; 65M20;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the isentropic quantum drift-diffusion model, a fourth order parabolic system, in space dimensions d = 2, 3. First, we establish the global weak solutions with large initial value and periodic boundary conditions. Then we show the semiclassical limit by delicate interpolation estimates and compactness argument.
引用
收藏
页码:416 / 437
页数:21
相关论文
共 50 条
  • [31] Existence and semiclassical limit for the quantum drift-diffusion model
    Xiangsheng Xu
    Annali di Matematica Pura ed Applicata, 2014, 193 : 889 - 908
  • [32] Optimal control of the stationary quantum drift-diffusion model
    Unterreiter, A.
    Volkwein, S.
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2007, 5 (01) : 85 - 111
  • [33] Existence and semiclassical limit for the quantum drift-diffusion model
    Xu, Xiangsheng
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (03) : 889 - 908
  • [34] TWO DIMENSIONAL DRIFT-DIFFUSION SYSTEM IN A CRITICAL WEIGHTED SPACE
    Kurokiba, Masaki
    Ogawa, Takayoshi
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2015, 28 (7-8) : 753 - 776
  • [35] Spin drift-diffusion for two-subband quantum wells
    de Assis, I. R.
    Raimondi, R.
    Ferreira, G. J.
    PHYSICAL REVIEW B, 2021, 103 (16)
  • [36] Finite volume approximation for degenerate drift-diffusion system in several space dimensions
    Chainais-Hillairet, C
    Peng, YJ
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2004, 14 (03): : 461 - 481
  • [37] The study of a drift-diffusion model
    Abouchabaka, J
    Aboulaïch, R
    Nachaoui, A
    Souissi, A
    ICM 2001: 13TH INTERNATIONAL CONFERENCE ON MICROELECTRONICS, PROCEEDINGS, 2001, : 54 - 58
  • [38] The quantum drift-diffusion model: Existence and exponential convergence to the equilibrium
    Pinaud, Olivier
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2019, 36 (03): : 811 - 836
  • [39] Adaptive time discretization for a transient quantum drift-diffusion model
    Shimada, T.
    Odanaka, S.
    SISPAD 2007: SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES 2007, 2007, : 337 - 340
  • [40] Conservation laws and solutions of a quantum drift-diffusion model for semiconductors
    Ibragimov, N. H.
    Khamitova, R.
    Avdonina, E. D.
    Galiakberova, L. R.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2015, 77 : 69 - 73