Partition and Disjoint Cycles in Digraphs

被引:0
|
作者
Chunjiao Song
Jin Yan
机构
[1] Shandong University,School of Mathematics
来源
Graphs and Combinatorics | 2023年 / 39卷
关键词
Minimum out-degree; Partition; Vertex disjoint cycles; Probability method; 05C20; 05C38;
D O I
暂无
中图分类号
学科分类号
摘要
Let D be a digraph, we use δ+(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta ^+(D)$$\end{document} to denote the minimum out-degree of D. In 2006, Alon proposed a problem stating that if there exists an integer function F(d1,…,dk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(d_1, \ldots ,d_k)$$\end{document} for a digraph D such that if δ+(D)≥F(d1,…,dk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta ^{+}(D) \ge F(d_1, \ldots ,d_k)$$\end{document}, then V(D) can be partitioned into k parts V1,…,Vk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_1,\ldots ,V_k$$\end{document} with δ+(D[Vi])≥di\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta ^{+}(D[V_i]) \ge d_i$$\end{document} for each i∈[k]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i \in [k]$$\end{document}, here D[Vi]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D[V_i]$$\end{document} denotes the induced subdigraph of Vi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_i$$\end{document}. We prove that F(d1,…,dk)≤2(d1+⋯+dk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(d_1, \ldots ,d_k) \le 2(d_1+\cdots +d_k)$$\end{document} under the condition that the maximum in-degree is bounded and lnk2<min{d1,⋯,dk}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{\ln k}{2} < \min \{d_1, \dots , d_k\}$$\end{document} by using Lovász Local Lemma. Furthermore, we show that some regular digraphs, and digraphs of small order can be partitioned into k parts such that both the minimum in-degree and the minimum out-degree of the digraph induced by each part are at least di\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_i$$\end{document} for each i∈[k]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i \in [k]$$\end{document}. Based on the results above, we further give lower bounds of the minimum out-degree of some special class digraphs containing k vertex disjoint cycles of different lengths.
引用
收藏
相关论文
共 50 条
  • [41] Arc-disjoint paths in expander digraphs
    Bohman, T
    Frieze, A
    SIAM JOURNAL ON COMPUTING, 2003, 32 (02) : 326 - 344
  • [42] The partition dimension of Cayley digraphs
    Fehr M.
    Gosselin S.
    Oellermann O.R.
    aequationes mathematicae, 2006, 71 (1-2) : 1 - 18
  • [43] Edge-disjoint branchings in temporal digraphs
    Campos, Victor
    Lopes, Raul
    Marino, Andrea
    Silva, Ana
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (04):
  • [44] Arc-disjoint paths in expander digraphs
    Bohman, T
    Frieze, A
    42ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2001, : 558 - 567
  • [45] Edge-Disjoint Paths in Eulerian Digraphs
    Cavallaro, Dario Giuliano
    Kawarabayashi, Ken-ichi
    Kreutzer, Stephan
    PROCEEDINGS OF THE 56TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2024, 2024, : 704 - 715
  • [46] Degree conditions for disjoint path covers in digraphs
    Ma, Ansong
    Sun, Yuefang
    DISCRETE MATHEMATICS, 2025, 348 (05)
  • [47] Disjoint essential cycles
    Mohar, B
    Robertson, N
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1996, 68 (02) : 324 - 349
  • [48] Kernel Bounds for Disjoint Cycles and Disjoint Paths
    Bodlaender, Hans L.
    Thomasse, Stephan
    Yeo, Anders
    ALGORITHMS - ESA 2009, PROCEEDINGS, 2009, 5757 : 635 - +
  • [49] Arc-Disjoint Paths in Decomposable Digraphs
    Bang-Jensen, Jorgen
    Maddaloni, Alessandro
    JOURNAL OF GRAPH THEORY, 2014, 77 (02) : 89 - 110
  • [50] A note on disjoint cycles
    Kotrbcik, Michal
    INFORMATION PROCESSING LETTERS, 2012, 112 (04) : 135 - 137