Thermal superconducting quantum interference proximity transistor

被引:0
|
作者
Nadia Ligato
Federico Paolucci
Elia Strambini
Francesco Giazotto
机构
[1] Istituto Nanoscienze-CNR and Scuola Normale Superiore,NEST
来源
Nature Physics | 2022年 / 18卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Superconductors are excellent thermal insulators at low temperatures owing to the presence of an energy gap in their density of states1. Through the so-called proximity effect2, superconductors can influence the density of states of nearby metallic or superconducting wires. In this way, the local density of states of a wire can be tuned by controlling the phase bias (φ) imposed across it3. Here we demonstrate a thermal superconducting quantum interference proximity transistor (T-SQUIPT) that enables the phase control of heat currents by exploiting the superconducting proximity effect. Our T-SQUIPT device comprises a quasi-one-dimensional aluminium nanowire forming the weak link embedded in a superconducting ring4,5. Controlling the phase bias by changing the magnetic flux through the ring shows temperature modulations of up to 16 mK, yielding a temperature-to-flux transfer function that reaches approximately 60 mK Φ0–1. We also demonstrate a hysteretic dependence of the local density of states of T-SQUIPTs on the applied magnetic field due to phase-slip transitions. This allows the T-SQUIPT device to operate as a phase-tunable thermal memory6,7, where the information is encoded in the temperature of the metallic mesoscopic island.
引用
收藏
页码:627 / 632
页数:5
相关论文
共 50 条
  • [31] Holographic superconducting quantum interference device
    Takeuchi, Shingo
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2015, 30 (09):
  • [32] Silicon superconducting quantum interference device
    Duvauchelle, J. E.
    Francheteau, A.
    Marcenat, C.
    Chiodi, F.
    Debarre, D.
    Hasselbach, K.
    Kirtley, J. R.
    Lefloch, F.
    APPLIED PHYSICS LETTERS, 2015, 107 (07)
  • [33] The Diamond Superconducting Quantum Interference Device
    Mandal, Soumen
    Bautze, Tobias
    Williams, Oliver A.
    Naud, Cecile
    Bustarret, Etienne
    Omnes, Franck
    Rodiere, Pierre
    Meunier, Tristan
    Baeuerle, Christopher
    Saminadayar, Laurent
    ACS NANO, 2011, 5 (09) : 7144 - 7148
  • [34] Applications of superconducting quantum interference devices
    Janicek, Frantisek
    Cerman, Anton
    Perny, Milan
    Brilla, Igor
    Marko, Lubomir
    Motycak, Stefan
    PROCEEDINGS OF THE 2015 16TH INTERNATIONAL SCIENTIFIC CONFERENCE ON ELECTRIC POWER ENGINEERING (EPE), 2015, : 429 - 432
  • [35] INVESTIGATIONS OF SUPERCONDUCTING QUANTUM INTERFERENCE DEVICES
    RICHTER, W
    ALBRECHT, G
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1973, 17 (02): : 531 - 540
  • [36] Floquet quantum thermal transistor
    Gupt, Nikhil
    Bhattacharyya, Srijan
    Das, Bikash
    Datta, Subhadeep
    Mukherjee, Victor
    Ghosh, Arnab
    PHYSICAL REVIEW E, 2022, 106 (02)
  • [37] Superconducting quantum interference at the atomic scale
    Karan, Sujoy
    Huang, Haonan
    Padurariu, Ciprian
    Kubala, Bjoern
    Theiler, Andreas
    Black-Schaffer, Annica M.
    Morras, Gonzalo
    Levy Yeyati, Alfredo
    Carlos Cuevas, Juan
    Ankerhold, Joachim
    Kern, Klaus
    Ast, Christian R.
    NATURE PHYSICS, 2022, 18 (08) : 893 - +
  • [38] Nonlocal superconducting quantum interference device
    Noh, Taewan
    Kindseth, Andrew
    Chandrasekhar, Venkat
    PHYSICAL REVIEW B, 2021, 104 (06)
  • [39] QUANTUM INTERFERENCE IN A MESOSCOPIC SUPERCONDUCTING LOOP
    MOSHCHALKOV, VV
    GIELEN, L
    DHALLE, M
    VANHAESENDONCK, C
    BRUYNSERAEDE, Y
    NATURE, 1993, 361 (6413) : 617 - 620
  • [40] DESIGN AND FABRICATION OF A MULTILOOP SUPERCONDUCTING QUANTUM INTERFERENCE DEVICE, THE CLOVER-LEAF SUPERCONDUCTING QUANTUM INTERFERENCE DEVICE
    MATSUDA, N
    UEHARA, G
    KAZAMI, K
    TAKADA, Y
    KADO, H
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 1995, 34 (1A): : L27 - L30