Automated structure modeling of large protein assemblies using crosslinks as distance restraints

被引:0
|
作者
Ferber M. [1 ]
Kosinski J. [2 ]
Ori A. [2 ,3 ]
Rashid U.J. [2 ]
Moreno-Morcillo M. [2 ,4 ]
Simon B. [2 ]
Bouvier G. [1 ]
Batista P.R. [1 ,5 ]
Muller C.W. [2 ]
Beck M. [2 ]
Nilges M. [1 ]
机构
[1] Institut Pasteur, Unité de Bioinformatique Structurale, Département de Biologie Structurale et Chimie, Paris
[2] European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg
[3] Leibniz Institute on Aging-Fritz Lipmann Institute, Jena
[4] Structural Bases of Genome Integrity Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre, Madrid
[5] Fundacąõ Oswaldo Cruz, Programa de Computacąõ Científica, Rio de Janeiro
关键词
D O I
10.1038/nmeth.3838
中图分类号
学科分类号
摘要
Crosslinking mass spectrometry is increasingly used for structural characterization of multisubunit protein complexes. Chemical crosslinking captures conformational heterogeneity, which typically results in conflicting crosslinks that cannot be satisfied in a single model, making detailed modeling a challenging task. Here we introduce an automated modeling method dedicated to large protein assemblies ('XL-MOD' software is available at http://aria.pasteur.fr/supplementary-data/x-links) that (i) uses a form of spatial restraints that realistically reflects the distribution of experimentally observed crosslinked distances; (ii) automatically deals with ambiguous and/or conflicting crosslinks and identifies alternative conformations within a Bayesian framework; and (iii) allows subunit structures to be flexible during conformational sampling. We demonstrate our method by testing it on known structures and available crosslinking data. We also crosslinked and modeled the 17-subunit yeast RNA polymerase III at atomic resolution; the resulting model agrees remarkably well with recently published cryoelectron microscopy structures and provides additional insights into the polymerase structure. © 2016 Nature America, Inc.
引用
收藏
页码:515 / 520
页数:5
相关论文
共 50 条
  • [31] MOLECULAR MODELING OF CARBORANES USING DISTANCE RESTRAINTS - THE MOLECULAR-DYNAMICS SIMULATION OF APPENDED THIOETHER MACROCYCLES
    HOLBREY, JD
    IVESON, PB
    LOCKHART, JC
    TOMKINSON, NP
    TEIXIDOR, F
    ROMEROSA, A
    VINAS, C
    RIUS, J
    JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS, 1993, (09): : 1451 - 1461
  • [32] Protein structure determination by conformational space annealing using NMR geometric restraints
    Joo, Keehyoung
    Joung, Insuk
    Lee, Jinhyuk
    Lee, Jinwoo
    Lee, Weontae
    Brooks, Bernard
    Lee, Sung Jong
    Lee, Jooyoung
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2015, 83 (12) : 2251 - 2262
  • [33] Protein Structure Determination by Conformational Space Annealing using NMR Geometric Restraints
    Lee, Jooyoung
    Joo, Keehyoung
    Joung, InSuk
    Lee, Jinhyuk
    Lee, Jinwoo
    Lee, Weontae
    Brooks, Bernard
    Lee, Sung Jong
    BIOPHYSICAL JOURNAL, 2016, 110 (03) : 188A - 188A
  • [34] Towards a fully automated creation of large protein structure ensembles
    Bietz, Stefan
    Rarey, Matthias
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [35] Distance restraints and resolution limit in molecular modeling of G protein-coupled receptor_peptide ligand interactions
    Wittelsberger, A.
    Mierke, D. F.
    Rosenblatt, M.
    JOURNAL OF BONE AND MINERAL RESEARCH, 2007, 22 : S398 - S398
  • [36] Modeling helix-turn-helix protein-induced DNA bending with knowledge-based distance restraints
    Tzou, WS
    Hwang, MJ
    BIOPHYSICAL JOURNAL, 1999, 77 (03) : 1191 - 1205
  • [37] Information-driven modeling of large macromolecular assemblies using NMR data
    van Ingen, Hugo
    Bonvin, Alexandre M. J. J.
    JOURNAL OF MAGNETIC RESONANCE, 2014, 241 : 103 - 114
  • [38] Protein structure prediction using distance information.
    Faulon, JL
    Rintoul, MD
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2001, 221 : U407 - U407
  • [39] AN AUTOMATED-METHOD FOR MODELING PROTEINS ON KNOWN TEMPLATES USING DISTANCE GEOMETRY
    SRINIVASAN, S
    MARCH, CJ
    SUDARSANAM, S
    PROTEIN SCIENCE, 1993, 2 (02) : 277 - 289