Pattern Avoidance in Alternating Sign Matrices

被引:0
|
作者
Robert Johansson
Svante Linusson
机构
[1] KTH-Royal Institute of Technology,Department of Mathematics
来源
Annals of Combinatorics | 2007年 / 11卷
关键词
05A15; alternating sign matrix; pattern avoidance; restricted permutations; Schröder numbers;
D O I
暂无
中图分类号
学科分类号
摘要
We generalize the definition of a pattern from permutations to alternating sign matrices. The number of alternating sign matrices avoiding 132 is proved to be counted by the large Schröder numbers, 1, 2, 6, 22, 90, 394, .... We give a bijection between 132-avoiding alternating sign matrices and Schröder paths, which gives a refined enumeration. We also show that the 132-, 123-avoiding alternating sign matrices are counted by every second Fibonacci number.
引用
收藏
页码:471 / 480
页数:9
相关论文
共 50 条
  • [31] Inverses and eigenvalues of diamond alternating sign matrices
    Catral, Minerva
    Lin, Minghua
    Olesky, D. D.
    van den Driessche, P.
    SPECIAL MATRICES, 2014, 2 (01): : 78 - 88
  • [32] The determinantal regions of complex sign pattern matrices and ray pattern matrices
    Shao, JY
    Shan, HY
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 395 : 211 - 228
  • [33] ALTERNATING SIGN AND SIGN-RESTRICTED MATRICES: REPRESENTATIONS AND PARTIAL ORDERS
    Brualdi, Richard A.
    Dahl, Geir
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2021, 37 : 613 - 639
  • [34] Construction and nonnegativity of sign idempotent sign pattern matrices
    Park, Jin-Woo
    Pyo, Sung-Soo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (11) : 2860 - 2869
  • [35] Sign idempotent sign pattern matrices that allow idempotence
    Lee, Sang-Gu
    Park, Jin-Woo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 487 : 232 - 241
  • [36] Sign pattern matrices and generalized inverses
    1600, Elsevier Science Publ Co Inc, New York, NY, USA (211):
  • [37] SIGN PATTERN MATRICES AND GENERALIZED INVERSES
    ESCHENBACH, CA
    HALL, FJ
    LI, ZS
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1994, 211 : 53 - 66
  • [38] IDEMPOTENCE FOR SIGN-PATTERN MATRICES
    ESCHENBACH, C
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 180 : 153 - 165
  • [39] ± sign pattern matrices that allow orthogonality
    Yanling Shao
    Liang Sun
    Yubin Gao
    Czechoslovak Mathematical Journal, 2006, 56 : 969 - 979
  • [40] A survey on bases of sign pattern matrices
    You, Lihua
    Shen, Jian
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (02) : 346 - 357