Traffic Flow Models with Phase Transitions

被引:0
|
作者
Rinaldo M. Colombo
Paola Goatin
机构
[1] Department of Mathematics,Laboratoire d’Analyse Non linéaire Appliquée et Modélisation, I.S.I.T.V.
[2] Université du Sud – Toulon – Var,undefined
来源
关键词
Hyperbolic conservation laws; Riemann problem; Phase transitions; Continuum traffic models;
D O I
暂无
中图分类号
学科分类号
摘要
The theory of hyperbolic conservation laws has been successfully applied to the study of vehicular traffic flows. We present here some models showing phase transitions, that in terms of traffic flows correspond to two distinct behaviors, free or congested.
引用
收藏
页码:383 / 390
页数:7
相关论文
共 50 条
  • [41] Phase transitions in a liquid flow
    Tonkonog, V. G.
    Gortyshov, Yu. F.
    HEAT TRANSFER RESEARCH, 2007, 38 (07) : 661 - 668
  • [42] EXPERIMENTAL COMPARISON OF TRAFFIC FLOW MODELS ON TRAFFIC DATA
    Hornak, Ivan
    Prikryl, Jan
    Programs and Algorithms of Numerical Mathematics 17, 2015, : 86 - 91
  • [43] Analysis and comparison of traffic flow models: a new hybrid traffic flow model vs benchmark models
    Facundo Storani
    Roberta Di Pace
    Francesca Bruno
    Chiara Fiori
    European Transport Research Review, 2021, 13
  • [44] Analysis and comparison of traffic flow models: a new hybrid traffic flow model vs benchmark models
    Storani, Facundo
    Di Pace, Roberta
    Bruno, Francesca
    Fiori, Chiara
    EUROPEAN TRANSPORT RESEARCH REVIEW, 2021, 13 (01)
  • [45] LATTICE-GAS MODELS OF PHASE-SEPARATION - INTERFACES, PHASE-TRANSITIONS, AND MULTIPHASE FLOW
    ROTHMAN, DH
    ZALESKI, S
    REVIEWS OF MODERN PHYSICS, 1994, 66 (04) : 1417 - 1479
  • [46] Breakdown and recovery in traffic flow models
    Nagel, K
    Kayatz, C
    Wagner, P
    TRAFFIC AND GRANULAR FLOW'01, 2003, : 141 - 153
  • [47] A review of the mathematical models for traffic flow
    Tyagi, V.
    Darbha, S.
    Rajagopal, K. R.
    INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING SCIENCES AND APPLIED MATHEMATICS, 2009, 1 (01) : 53 - 68
  • [48] A review of the mathematical models for traffic flow
    V. Tyagi
    S. Darbha
    K. R. Rajagopal
    International Journal of Advances in Engineering Sciences and Applied Mathematics, 2009, 1 (1) : 53 - 68
  • [49] Quadratic algebras in traffic flow models
    Twarock, R
    REPORTS ON MATHEMATICAL PHYSICS, 2003, 51 (2-3) : 381 - 389
  • [50] Network models for nonlocal traffic flow
    Friedrich, Jan
    Goettlich, Simone
    Osztfalk, Maximilian
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2022, 56 (01) : 213 - 235