Comparative efficiency of algorithms based on support vector machines for binary classification

被引:3
|
作者
Kadyrova N.O. [1 ]
Pavlova L.V. [1 ]
机构
[1] Institute of Applied Mathematics and Mechanics, St. Petersburg State Polytechnical University, ul. Politekhnicheskaya 29, St. Petersburg
关键词
binary classification; comparative efficiency of support vector classifiers; kernel functions; support vector machine; SVM algorithms;
D O I
10.1134/S0006350915010145
中图分类号
学科分类号
摘要
Methods of construction of support vector machines (SVMs) require no additional a priori information and allow large volumes of multidimensional data to be processed, which is especially important for solving various problems in computational biology. The main algorithms of SVM construction for binary classification are reviewed. The issue of the quality of the SVM learning algorithms is considered, and a description of proposed algorithms is given that is sufficient for their practical implementation. Comparative analysis of the efficiency of support vector classifiers is presented. © 2015, Pleiades Publishing, Inc.
引用
收藏
页码:13 / 24
页数:11
相关论文
共 50 条
  • [41] Multicategory classification by support vector machines
    Bredensteiner, EJ
    Bennett, KP
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 1999, 12 (1-3) : 53 - 79
  • [42] Support Vector Machines for classification and regression
    Brereton, Richard G.
    Lloyd, Gavin R.
    ANALYST, 2010, 135 (02) : 230 - 267
  • [43] Support vector machines for polycategorical classification
    Tsochantaridis, I
    Hofmann, T
    MACHINE LEARNING: ECML 2002, 2002, 2430 : 456 - 467
  • [44] An accurate traffic classification model based on support vector machines
    Cao, Jie
    Fang, Zhiyi
    Qu, Guannan
    Sun, Hongyu
    Zhang, Dan
    INTERNATIONAL JOURNAL OF NETWORK MANAGEMENT, 2017, 27 (01)
  • [45] Classification of the Enterprise Market Competition Based on Support Vector Machines
    Hao, Jialong
    Wu, Yanbin
    2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5, 2010, : 1644 - +
  • [46] Subspace-based support vector machines for pattern classification
    Kitamura, Takuya
    Takeuchi, Syogo
    Abe, Shigeo
    Fukui, Kazuhiro
    NEURAL NETWORKS, 2009, 22 (5-6) : 558 - 567
  • [47] A Combined Support Vector Machines Classification Based on Decision Fusion
    Fauvel, Mathieu
    Chanussot, Jocelyn
    Benediktsson, Jon Atli
    2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 2494 - +
  • [48] Support vector machines for histogram-based image classification
    Speech and Image Processing Services Research Laboratory, AT and T Labs.-Research, Red Bank, NJ 07701, United States
    IEEE Trans Neural Networks, 5 (1055-1064):
  • [49] Support vector machines ensemble based on fuzzy integral for classification
    Yan, Genting
    Ma, Guangfu
    Zhu, Liangkuan
    ADVANCES IN NEURAL NETWORKS - ISNN 2006, PT 1, 2006, 3971 : 974 - 980
  • [50] Medical Image Classification based on Fuzzy Support Vector Machines
    Bai Xing-li
    Qian Xu
    INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION, VOL 2, PROCEEDINGS, 2008, : 145 - 149