An Embedding Theorem for Automorphism Groups of Cartan Geometries

被引:0
|
作者
Uri Bader
Charles Frances
Karin Melnick
机构
[1] Department of Mathematics,Département de mathématiques
[2] Université Paris-Sud,Department of Mathematics
[3] Yale University,undefined
来源
关键词
Rigid geometric structures; Cartan geometries; group actions; parabolic geometries; 57S20; 22D45; 53C15;
D O I
暂无
中图分类号
学科分类号
摘要
We study the automorphism group of a Cartan geometry, and prove an embedding theorem analogous to a result of Zimmer for automorphism groups of G-structures. Our embedding theorem leads to general upper bounds on the real rank or nilpotence degree of a Lie subgroup of the automorphism group. We prove that if the maximal real rank is attained in the automorphism group of a geometry of parabolic type, then the geometry is flat and complete.
引用
收藏
页码:333 / 355
页数:22
相关论文
共 50 条