Four-manifolds with harmonic 2-forms of constant length

被引:0
|
作者
Inyoung Kim
机构
[1] Korea National University of Education,
来源
Geometriae Dedicata | 2020年 / 207卷
关键词
4-manifold; Harmonic 2-form; Biorthogonal curvature; Almost-Kähler; Primary 53C21; 53C20; 53C24; 53D35;
D O I
暂无
中图分类号
学科分类号
摘要
It was shown by Seaman that if a compact, connected, oriented, riemannian 4-manifold (M, g) of positive sectional curvature admits a harmonic 2-form of constant length, then M has definite intersection form and such a harmonic form is unique up to constant multiples. In this paper, we show that such a manifold is diffeomorphic to CP2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {CP}_{2}$$\end{document} with a slightly weaker curvature hypothesis and there is an infinite dimensional moduli space of such metrics near the Fubini-Study metric on CP2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {CP}_{2}$$\end{document}.
引用
收藏
页码:209 / 218
页数:9
相关论文
共 50 条
  • [21] DECOMPOSITION IN LARGE OF 2-FORMS OF CONSTANT RANK
    DIBAG, I
    ANNALES DE L INSTITUT FOURIER, 1974, 24 (03) : 317 - 335
  • [22] Homogeneous four-manifolds with half-harmonic Weyl curvature tensor
    Calvino-Louzao, Esteban
    Ferreiro-Subrido, Maria
    Garcia-Rio, Eduardo
    Vazquez-Lorenzo, Ramon
    FORUM MATHEMATICUM, 2022, 34 (06) : 1497 - 1505
  • [23] On the conformal systoles of four-manifolds
    Hamilton, M. J. D.
    MANUSCRIPTA MATHEMATICA, 2006, 121 (04) : 417 - 424
  • [24] FOUR-MANIFOLDS WITH POSITIVE CURVATURE
    Diogenes, R.
    Ribeiro, E.
    Rufino, E.
    GLASGOW MATHEMATICAL JOURNAL, 2021, 63 (02) : 245 - 257
  • [25] Particles and connections on four-manifolds
    Hurtubise, JC
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 1999, 7 (01) : 55 - 93
  • [26] Symmetry groups of four-manifolds
    McCooey, MP
    TOPOLOGY, 2002, 41 (04) : 835 - 851
  • [27] On rational homotopy of four-manifolds
    Terzic, S
    PROCEEDINGS OF THE WORKSHOP ON CONTEMPORARY GEOMETRY AND RELATED TOPICS, 2004, : 375 - 388
  • [28] Embedded tori in four-manifolds
    Morgan, JW
    Szabó, Z
    TOPOLOGY, 1999, 38 (03) : 479 - 496
  • [29] On the conformal systoles of four-manifolds
    M. J. D. Hamilton
    manuscripta mathematica, 2006, 121 : 417 - 424
  • [30] Trisections and spun four-manifolds
    Meier, Jeffrey
    MATHEMATICAL RESEARCH LETTERS, 2018, 25 (05) : 1497 - 1524