Four-manifolds with harmonic 2-forms of constant length

被引:0
|
作者
Inyoung Kim
机构
[1] Korea National University of Education,
来源
Geometriae Dedicata | 2020年 / 207卷
关键词
4-manifold; Harmonic 2-form; Biorthogonal curvature; Almost-Kähler; Primary 53C21; 53C20; 53C24; 53D35;
D O I
暂无
中图分类号
学科分类号
摘要
It was shown by Seaman that if a compact, connected, oriented, riemannian 4-manifold (M, g) of positive sectional curvature admits a harmonic 2-form of constant length, then M has definite intersection form and such a harmonic form is unique up to constant multiples. In this paper, we show that such a manifold is diffeomorphic to CP2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {CP}_{2}$$\end{document} with a slightly weaker curvature hypothesis and there is an infinite dimensional moduli space of such metrics near the Fubini-Study metric on CP2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {CP}_{2}$$\end{document}.
引用
收藏
页码:209 / 218
页数:9
相关论文
共 50 条