Parity-violating neutron spin rotation in hydrogen and deuterium

被引:0
|
作者
H. W. Grießhammer
M. R. Schindler
R. P. Springer
机构
[1] The George Washington University,Institute for Nuclear Studies, Department of Physics
[2] University of South Carolina,Department of Physics and Astronomy
[3] Duke University,Department of Physics
来源
关键词
Partial Wave; Power Counting; Wave Function Renormalization; Triton Binding Energy; Neutron Spin Rotation;
D O I
暂无
中图分类号
学科分类号
摘要
We calculate the (parity-violating) spin-rotation angle of a polarized neutron beam through hydrogen and deuterium targets, using pionless effective field theory up to next-to-leading order. Our result is part of a program to obtain the five leading independent low-energy parameters that characterize hadronic parity violation from few-body observables in one systematic and consistent framework. The two spin-rotation angles provide independent constraints on these parameters. Our result for np spin rotation is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1} {\rho }\frac{{d\varphi _{PV}^{np} }} {{dl}} = \left[ {4.5 \pm 0.5} \right] rad MeV^{ - \frac{1} {2}} \left( {2g^{\left( {^3 S_1 - ^3 P_1 } \right)} + g^{\left( {^3 S_1 - ^3 P_1 } \right)} } \right) - \left[ {18.5 \pm 1.9} \right] rad MeV^{ - \frac{1} {2}} \left( {g_{\left( {\Delta {\rm I} = 0} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} - 2g_{\left( {\Delta {\rm I} = 2} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} } \right)$$\end{document}, while for nd spin rotation we obtain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1} {\rho }\frac{{d\varphi _{PV}^{nd} }} {{dl}} = \left[ {8.0 \pm 0.8} \right] rad MeV^{ - \frac{1} {2}} g^{\left( {^3 S_1 - ^1 P_1 } \right)} + \left[ {17.0 \pm 1.7} \right] rad MeV^{ - \frac{1} {2}} g^{\left( {^3 S_1 - ^3 P_1 } \right)} + \left[ {2.3 \pm 0.5} \right] rad MeV^{ - \frac{1} {2}} \left( {3g_{\left( {\Delta {\rm I} = 0} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} - 2g_{\left( {\Delta {\rm I} = 1} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} } \right)$$\end{document}, where the g(X-Y), in units of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$MeV^{ - \frac{3} {2}}$$\end{document}, are the presently unknown parameters in the leading-order parity-violating Lagrangian. Using naıve dimensional analysis to estimate the typical size of the couplings, we expect the signal for standard target densities to be \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| {\frac{{d\varphi _{PV} }} {{dl}}} \right| \approx \left[ {10^{ - 7} \ldots 10^{ - 6} } \right]\frac{{rad}} {m}$$\end{document} for both hydrogen and deuterium targets. We find no indication that the nd observable is enhanced compared to the np one. All results are properly renormalized. An estimate of the numerical and systematic uncertainties of our calculations indicates excellent convergence. An appendix contains the relevant partial-wave projectors of the three-nucleon system.
引用
收藏
相关论文
共 50 条
  • [21] Testing parity-violating physics from cosmic rotation power reconstruction
    Namikawa, Toshiya
    PHYSICAL REVIEW D, 2017, 95 (04)
  • [22] PARITY-VIOLATING EFFECTS IN COSMOLOGY
    VILENKIN, A
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (04): : 567 - 567
  • [23] Parity-Violating Moller Scattering
    Kumar, Krishna S.
    INTERSECTIONS OF PARTICLE AND NUCLEAR PHYSICS, 2009, 1182 : 660 - 664
  • [24] Parity-violating contributions to nuclear spin-rotation interactions and to NMR shielding constants in tetrahedral molecules
    Aucar, I. Agustin
    Chamorro, Yuly
    Borschevsky, Anastasia
    PHYSICAL REVIEW A, 2022, 106 (06)
  • [25] Parity-Violating PVDIS with SoLID
    Souder, P. A.
    19TH PARTICLES AND NUCLEI INTERNATIONAL CONFERENCE (PANIC11), 2012, 1441 : 123 - 125
  • [26] Parity-Violating PVDIS with SoLID
    Souder, P. A.
    3RD INTERNATIONAL WORKSHOP ON NUCLEON STRUCTURE AT LARGE BJORKEN X, 2011, 1369
  • [27] PARITY-VIOLATING NUCLEAR FORCES
    WICK, GL
    SCIENCE, 1970, 168 (3927) : 104 - &
  • [28] Signatures of a parity-violating universe
    Coulton, William R.
    Philcox, Oliver H. E.
    Villaescusa-Navarro, Francisco
    PHYSICAL REVIEW D, 2024, 109 (02)
  • [29] Parity-violating electron scattering
    Donnelly, TW
    NUCLEAR PHYSICS A, 1997, 623 (1-2) : C223 - C236
  • [30] Parity-violating effects in electron spin resonance g-tensors
    Weijo, Ville
    Manninen, Pekka
    CHEMICAL PHYSICS LETTERS, 2006, 433 (1-3) : 37 - 42