QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance

被引:0
|
作者
H. X. Lin
M. Z. Zhu
M. Yano
J. P. Gao
Z. W. Liang
W. A. Su
X. H. Hu
Z. H. Ren
D. Y. Chao
机构
[1] The Chinese Academy of Sciences,SHARF Laboratory, Shanghai Institute of Plant Physiology and Ecology
[2] The Chinese Academy of Sciences,National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology
[3] National Institute of Agrobiological Sciences,Department of Molecular Genetics
[4] Chinese Academy of Sciences,Northeast Institute of Geography and Agricultural Ecology
来源
关键词
Salt Stress; Salt Tolerance; Physiological Trait; RFLP Marker; Total Phenotypic Variance;
D O I
暂无
中图分类号
学科分类号
摘要
An F2 and an equivalent F3 population derived from a cross between a high salt-tolerance indica variety, Nona Bokra, and a susceptible elite japonica variety, Koshihikari, were produced. We performed QTL mapping for physiological traits related to rice salt-tolerance. Three QTLs for survival days of seedlings (SDSs) under salt stress were detected on chromosomes 1, 6 and 7, respectively, and explained 13.9% to 18.0% of the total phenotypic variance. Based on the correlations between SDSs and other physiological traits, it was considered that damage of leaves was attributed to accumulation of Na+ in the shoot by transport of Na+ from the root to the shoot in external high concentration. We found eight QTLs including three for three traits of the shoots, and five for four traits of the roots at five chromosomal regions, controlled complex physiological traits related to rice salt-tolerance under salt stress. Of these QTLs, the two major QTLs with the very large effect, qSNC-7 for shoot Na+ concentration and qSKC-1 for shoot K+ concentration, explained 48.5% and 40.1% of the total phenotypic variance, respectively. The QTLs detected between the shoots and the roots almost did not share the same map locations, suggesting that the genes controlling the transport of Na+ and K+ between the shoots and the roots may be different.
引用
收藏
页码:253 / 260
页数:7
相关论文
共 50 条
  • [41] GmHKT1;4, a novel soybean gene regulating Na+/K+ ratio in roots enhances salt tolerance in transgenic plants
    Huatao Chen
    Xin Chen
    Heping Gu
    Bingyue Wu
    Hongmei Zhang
    Xingxing Yuan
    Xiaoyan Cui
    Plant Growth Regulation, 2014, 73 : 299 - 308
  • [42] Salt-Tolerance in Castor Bean (Ricinus communis L.) Is Associated with Thicker Roots and Better Tissue K+/Na+ Distribution
    Zheng, Junlin
    Suhono, Gilang B. F.
    Li, Yinghao
    Jiang, Maggie Ying
    Chen, Yinglong
    Siddique, Kadambot H. M.
    AGRICULTURE-BASEL, 2021, 11 (09):
  • [43] GmHKT1;4, a novel soybean gene regulating Na+/K+ ratio in roots enhances salt tolerance in transgenic plants
    Chen, Huatao
    Chen, Xin
    Gu, Heping
    Wu, Bingyue
    Zhang, Hongmei
    Yuan, Xingxing
    Cui, Xiaoyan
    PLANT GROWTH REGULATION, 2014, 73 (03) : 299 - 308
  • [44] Reduced Na+ and K+ permeability of K+ channel in plasma membrane isolated from roots of salt-tolerant mutant of wheat
    Guo, FQ
    Tang, ZC
    CHINESE SCIENCE BULLETIN, 1999, 44 (09): : 816 - 821
  • [45] Salt tolerance in two tall wheatgrass species is associated with selective capacity for K+ over Na+
    Guo, Qiang
    Meng, Lin
    Mao, Pei-Chun
    Tian, Xiao-Xia
    ACTA PHYSIOLOGIAE PLANTARUM, 2015, 37 (01)
  • [46] STUDIES ON GROWTH AND DISTRIBUTION OF NA+, K+ AND CL- IN SOYBEAN VARIETIES DIFFERING IN SALT TOLERANCE
    LAUCHLI, A
    WIENEKE, J
    ZEITSCHRIFT FUR PFLANZENERNAHRUNG UND BODENKUNDE, 1979, 142 (01): : 3 - 13
  • [47] Genetic analysis of Na+ and K+ concentrations in leaf and stem as physiological components of salt tolerance in Tomato
    Villalta, I.
    Reina-Sanchez, A.
    Bolarin, M. C.
    Cuartero, J.
    Belver, A.
    Venema, K.
    Carbonell, E. A.
    Asins, M. J.
    THEORETICAL AND APPLIED GENETICS, 2008, 116 (06) : 869 - 880
  • [48] Salt tolerance in two tall wheatgrass species is associated with selective capacity for K+ over Na+
    Qiang Guo
    Lin Meng
    Pei-Chun Mao
    Xiao-Xia Tian
    Acta Physiologiae Plantarum, 2015, 37
  • [49] Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants
    Almeida, Diego M.
    Oliveira, M. Margarida
    Saibo, Nelson J. M.
    GENETICS AND MOLECULAR BIOLOGY, 2017, 40 (01) : 326 - 345
  • [50] Melatonin improves K+ and Na+ homeostasis in rice under salt stress by mediated nitric oxide
    Yan, Feiyu
    Wei, Haimin
    Li, Weiwei
    Liu, Zhenghui
    Tang, She
    Chen, Lin
    Ding, Chengqiang
    Jiang, Yu
    Ding, Yanfeng
    Li, Ganghua
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2020, 206