Measurement of the Thermal Conductivity of Si and GaAs Wafers Using the Photothermal Displacement Technique

被引:0
|
作者
J. H. Kim
D. Seong
G. H. Ihm
C. Rhee
机构
来源
关键词
GaAs; impurities; phonons; photothermal displacement technique; semiconductors; Si; thermal conductivity; thermal diffusivity;
D O I
暂无
中图分类号
学科分类号
摘要
Thermal conductivity and thermal diffusivity of Si and GaAs wafers were measured using the photothermal displacement technique, and the temperature dependence of these two quantities was investigated. Thermal diffusivity was obtained from the phase difference between the heating source and the signal, and thermal conductivity was determined from the maximum value of the signal amplitude in the temperature range 80 to 300 K. It was verified that an increase in doping concentration gives rise to a decrease in thermal conductivity at low temperatures. The experimental results obtained on samples with different types and doping concentrations are consistent with those expected from theoretical considerations.
引用
收藏
页码:281 / 290
页数:9
相关论文
共 50 条
  • [41] Probing technique for localized thermal conductivity measurement
    Ziouche, K.
    Bougrioua, Z.
    Lejeune, P.
    Lasri, T.
    Leclercq, D.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2015, 26 (08)
  • [42] Thermal diffusivity measurement of polymeric thin films using the photothermal displacement technique. I. Free-standing film case
    Ogawa, ET
    Hu, CA
    Ho, PS
    JOURNAL OF APPLIED PHYSICS, 1999, 86 (11) : 6018 - 6027
  • [43] PHOTOTHERMAL TECHNIQUE FOR MEASURING THERMAL CONDUCTIVITY AND DIFFUSIVITY OF NANOFLUIDS: A NEW APPROACH
    Hechavarria, Rodney
    Delgado, Osvaldo
    Hidalgo, Andres
    Segundo, Espin
    Guamanquispe, Jorge
    PERIODICO TCHE QUIMICA, 2018, 15 (29): : 257 - 265
  • [44] MEASUREMENTS OF THERMAL-CONDUCTIVITY OF DIAMOND FILMS BY PHOTOTHERMAL DEFLECTION TECHNIQUE
    BERTOLOTTI, M
    LIAKHOU, GL
    FERRARI, A
    RALCHENKO, VGF
    SMOLIN, AA
    OBRAZTSOVA, E
    KOROTOUSHENKO, KG
    PIMENOV, SM
    KONOV, VI
    JOURNAL OF APPLIED PHYSICS, 1994, 75 (12) : 7795 - 7798
  • [45] Frequency bandwidth optimization of photothermal technique for thermal conductivity depth profiling
    Xu, MH
    Cheng, JC
    Zhang, SY
    REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION, VOLS 19A AND 19B, 2000, 509 : 1905 - 1910
  • [46] Decreasing of the thermal conductivity of Si nanopillar/SiGe composite films investigated by using a piezoelectric photothermal spectroscopy
    Harada, Tomoki
    Aki, Tsubasa
    Ohori, Daisuke
    Samukawa, Seiji
    Ikari, Tetsuo
    Fukuyama, Atsuhiko
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2020, 59
  • [47] Spatial distribution of thermal conductivity of diamond wafers as measured by Laser Flash Technique
    Ralchenko, V
    Vlasov, A
    Vlasov, I
    Zubov, B
    Nikitin, A
    Khomich, A
    LASERS IN SYNTHESIS, CHARACTERIZATION, AND PROCESSING OF DIAMOND, 1997, 3484 : 214 - 221
  • [48] Thermal conductivity measurement of AlN films by fast photothermal method.
    Aissa, K. Ait
    Semmar, N.
    Meneses, D. De Sousa
    Le Brizoual, L.
    Gaillard, M.
    Petit, A.
    Jouan, P-Y
    Boulmer-Leborgne, C.
    Djouadi, M. A.
    6TH EUROPEAN THERMAL SCIENCES CONFERENCE (EUROTHERM 2012), 2012, 395
  • [49] Thermal conductivity measurement of porous silicon by the pulsed-photothermal method
    Amin-Chalhoub, E.
    Semmar, N.
    Coudron, L.
    Gautier, G.
    Boulmer-Leborgne, C.
    Petit, A.
    Gaillard, M.
    Mathias, J.
    Millon, E.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (35)
  • [50] Potentiality of the photothermal surface-displacement technique for precisely performed absorption measurement
    Zimmermann, P.
    Ristau, D.
    Weisch, E.
    Applied Physics A: Solids and Surfaces, 1994, 58 (04): : 377 - 383