The Laplacian of a uniform hypergraph

被引:0
|
作者
Shenglong Hu
Liqun Qi
机构
[1] The Hong Kong Polytechnic University,Department of Applied Mathematics
来源
关键词
Tensor; Eigenvalue; Hypergraph; Laplacian;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the Laplacian, i.e., the normalized Laplacian tensor of a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-uniform hypergraph. We show that the real parts of all the eigenvalues of the Laplacian are in the interval \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,2]$$\end{document}, and the real part is zero (respectively two) if and only if the eigenvalue is zero (respectively two). All the H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^+$$\end{document}-eigenvalues of the Laplacian and all the smallest H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^+$$\end{document}-eigenvalues of its sub-tensors are characterized through the spectral radii of some nonnegative tensors. All the H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^+$$\end{document}-eigenvalues of the Laplacian that are less than one are completely characterized by the spectral components of the hypergraph and vice verse. The smallest H-eigenvalue, which is also an H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^+$$\end{document}-eigenvalue, of the Laplacian is zero. When \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} is even, necessary and sufficient conditions for the largest H-eigenvalue of the Laplacian being two are given. If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} is odd, then its largest H-eigenvalue is always strictly less than two. The largest H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^+$$\end{document}-eigenvalue of the Laplacian for a hypergraph having at least one edge is one; and its nonnegative eigenvectors are in one to one correspondence with the flower hearts of the hypergraph. The second smallest H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^+$$\end{document}-eigenvalue of the Laplacian is positive if and only if the hypergraph is connected. The number of connected components of a hypergraph is determined by the H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^+$$\end{document}-geometric multiplicity of the zero H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^+$$\end{document}-eigenvalue of the Lapalacian.
引用
收藏
页码:331 / 366
页数:35
相关论文
共 50 条
  • [41] The hardness of 3-uniform hypergraph coloring
    Dinur, I
    Regev, O
    Smyth, C
    COMBINATORICA, 2005, 25 (05) : 519 - 535
  • [42] The hardness of 3-uniform hypergraph coloring
    Dinur, I
    Regev, O
    Smyth, C
    FOCS 2002: 43RD ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2002, : 33 - 40
  • [43] Inverse Perron values and connectivity of a uniform hypergraph
    Bu, Changjiang
    Li, Haifeng
    Zhou, Jiang
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (04):
  • [44] HpLapGCN: Hypergraph p-Laplacian graph convolutional networks
    Fu, Sichao
    Liu, Weifeng
    Zhou, Yicong
    Nie, Liqiang
    NEUROCOMPUTING, 2019, 362 : 166 - 174
  • [45] Accurately modeling the human brain functional correlations with hypergraph Laplacian
    Ma, Jichao
    Wang, Yanjiang
    Liu, Baodi
    Liu, Weifeng
    NEUROCOMPUTING, 2021, 428 : 239 - 247
  • [46] Accurately modeling the human brain functional correlations with hypergraph Laplacian
    Ma, Jichao
    Wang, Yanjiang
    Liu, Baodi
    Liu, Weifeng
    Neurocomputing, 2021, 428 : 239 - 247
  • [47] On hypergraph coloring and 3-uniform linear hypergraph set-indexers of a graph
    Paul, Viji
    Germina, K. A.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2015, 7 (02)
  • [48] Laplacian and signless Laplacian Z-eigenvalues of uniform hypergraphs
    Changjiang Bu
    Yamin Fan
    Jiang Zhou
    Frontiers of Mathematics in China, 2016, 11 : 511 - 520
  • [49] Laplacian and signless Laplacian Z-eigenvalues of uniform hypergraphs
    Bu, Changjiang
    Fan, Yamin
    Zhou, Jiang
    FRONTIERS OF MATHEMATICS IN CHINA, 2016, 11 (03) : 511 - 520
  • [50] On the Sensitivity Complexity of k-Uniform Hypergraph Properties
    Li, Qian
    Sun, Xiaoming
    34TH SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2017), 2017, 66