Finite element approximation of multi-scale elliptic problems using patches of elements

被引:0
|
作者
Roland Glowinski
Jiwen He
Alexei Lozinski
Jacques Rappaz
Joël Wagner
机构
[1] University of Houston,Department of Mathematics
[2] Swiss Federal Institute of Technology,Section of Mathematics
来源
Numerische Mathematik | 2005年 / 101卷
关键词
65N55; 65N30; 65N12;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we present a method for the numerical solution of elliptic problems with multi-scale data using multiple levels of not necessarily nested grids. The method consists in calculating successive corrections to the solution in patches whose discretizations are not necessarily conforming. This paper provides proofs of the results published earlier (see C. R. Acad. Sci. Paris, Ser. I 337 (2003) 679–684), gives a generalization of the latter to more than two domains and contains extensive numerical illustrations. New results including the spectral analysis of the iteration operator and a numerical method to evaluate the constant of the strengthened Cauchy-Buniakowski-Schwarz inequality are presented.
引用
收藏
页码:663 / 687
页数:24
相关论文
共 50 条
  • [21] Finite element approximation of elliptic homogenization problems in nondivergence-form
    Capdeboscq, Yves
    Sprekeler, Timo
    Suli, Endre
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2020, 54 (04): : 1221 - 1257
  • [22] Finite element approximation of fractional order elliptic boundary value problems
    Szekeres, Bela J.
    Izsak, Ferenc
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 292 : 553 - 561
  • [23] FINITE-ELEMENT APPROXIMATION OF NONLINEAR ELLIPTIC PROBLEMS WITH DISCONTINUOUS COEFFICIENTS
    FEISTAUER, M
    SOBOTIKOVA, V
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1990, 24 (04): : 457 - 500
  • [24] Finite element method multi-scale for the Stokes problem
    Lozinski, Alexei
    Mghazli, Zoubida
    Blal, Khallih Ould Ahmed Ould
    COMPTES RENDUS MATHEMATIQUE, 2013, 351 (7-8) : 271 - 275
  • [25] Multi-Scale Finite Element Modeling for Structural Materials
    Watanabe, Ikumu
    TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, 2014, 100 (11): : 814 - 819
  • [26] Multi-scale Finite Element Method and its Application
    Li, Cuiyu
    Zhang, Xiaotao
    ADVANCES IN SUPERALLOYS, PTS 1 AND 2, 2011, 146-147 : 1583 - +
  • [27] Discontinuous Galerkin method for a class of elliptic multi-scale problems
    Yuan, Ling
    Shu, Chi-Wang
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2008, 56 (08) : 1017 - 1032
  • [28] THE MULTISCALE FINITE ELEMENT METHOD WITH NONCONFORMING ELEMENTS FOR ELLIPTIC HOMOGENIZATION PROBLEMS
    Chen, Zhangxin
    Cui, Ming
    Savchuk, Tatyana Y.
    Yu, Xijun
    MULTISCALE MODELING & SIMULATION, 2008, 7 (02): : 517 - 538
  • [29] Multi-image matching using multi-scale oriented patches
    Brown, M
    Szeliski, R
    Winder, S
    2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, : 510 - +
  • [30] Multi-Scale and Multi-Grid Finite Element Analysis of Concrete
    Pearce, C. J.
    Kaczmarczyk, L.
    TRENDS IN COMPUTATIONAL STRUCTURES TECHNOLOGY, 2008, : 75 - 96