Bethe ansatz diagonalization of the Heun–Racah operator

被引:0
|
作者
Pierre-Antoine Bernard
Gauvain Carcone
Nicolas Crampé
Luc Vinet
机构
[1] Université de Montréal,Centre de Recherches Mathématiques
[2] Université d’Orléans,Institut Denis
[3] IVADO,Poisson CNRS/UMR 7013, Université de Tours
来源
Letters in Mathematical Physics | 2023年 / 113卷
关键词
Racah algebra; Heun operator; Bethe ansatz;
D O I
暂无
中图分类号
学科分类号
摘要
The diagonalization of the Heun–Racah operator is studied with the help of the modified algebraic Bethe ansatz. This operator is the most general bilinear expression in two generators of the Racah algebra. A presentation of this algebra is given in terms of dynamical operators and allows the construction of Bethe vectors for the Heun–Racah operator. The associated Bethe equations are derived for both the homogeneous and inhomogeneous cases.
引用
收藏
相关论文
共 50 条
  • [1] Bethe ansatz diagonalization of the Heun-Racah operator
    Bernard, Pierre-Antoine
    Carcone, Gauvain
    Crampe, Nicolas
    Vinet, Luc
    LETTERS IN MATHEMATICAL PHYSICS, 2023, 113 (01)
  • [2] Diagonalization of the Heun-Askey-Wilson operator, Leonard pairs and the algebraic Bethe ansatz
    Baseilhac, Pascal
    Pimenta, Rodrigo A.
    NUCLEAR PHYSICS B, 2019, 949
  • [3] Heun operator of Lie type and the modified algebraic Bethe ansatz
    Bernard, Pierre-Antoine
    Crampe, Nicolas
    Kabakibo, Dounia Shaaban
    Vinet, Luc
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (08)
  • [4] Finite lattice Bethe ansatz systems and the Heun equation
    Dorey, P
    Suzuki, J
    Tateo, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (06): : 2047 - 2061
  • [5] Operator techniques in the Hopf algebra for a symmetric group within Racah calculus for Bethe Ansatz eigenfunctions
    Jakubczyk, Pawel
    Jakubczyk, Dorota
    Lulek, Tadeusz
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2009, 246 (05): : 1029 - 1032
  • [6] Time and band limiting operator and Bethe ansatz
    Bernard, Pierre-Antoine
    Crampe, Nicolas
    Vinet, Luc
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (28)
  • [7] Spinorial R operator and Algebraic Bethe Ansatz
    Karakhanyan, D.
    Kirschner, R.
    NUCLEAR PHYSICS B, 2020, 951
  • [8] Liouville reflection operator, affine Yangian and Bethe ansatz
    Litvinov, Alexey
    Vilkoviskiy, Ilya
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (12)
  • [9] Liouville reflection operator, affine Yangian and Bethe ansatz
    Alexey Litvinov
    Ilya Vilkoviskiy
    Journal of High Energy Physics, 2020
  • [10] Bethe Ansatz and Q-operator for the open ASEP
    Lazarescu, Alexandre
    Pasquier, Vincent
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (29)