Finite lattice Bethe ansatz systems and the Heun equation

被引:18
|
作者
Dorey, P [1 ]
Suzuki, J
Tateo, R
机构
[1] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
[2] Shizuoka Univ, Fac Sci, Dept Phys, Ohya, Shizuoka, Japan
[3] Univ Turin, Dipartimento Fis Teor, I-10125 Turin, Italy
来源
关键词
D O I
10.1088/0305-4470/37/6/006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the Poschl-Teller equation in complex domain and deduce infinite families of TQ and Bethe ansatz equations, classified by four integers. In all these models the form of T is very simple, while Q can be explicitly written in terms of the Heun function. At particular values there is an interesting interpretation in terms of finite lattice spin-L-2/2 XXZ quantum chain with Delta = cospi/L (for free-free boundary conditions), or Delta = -cospi/L (for periodic boundary conditions). This result generalizes the findings of Fridkin, Stroganov and Zagier. We also discuss the continuous (field theory) limit of these systems in view of the so-called ODE/IM correspondence.
引用
收藏
页码:2047 / 2061
页数:15
相关论文
共 50 条
  • [1] Bethe ansatz diagonalization of the Heun–Racah operator
    Pierre-Antoine Bernard
    Gauvain Carcone
    Nicolas Crampé
    Luc Vinet
    Letters in Mathematical Physics, 2023, 113
  • [2] The Heun equation and the Calogero-Moser-Sutherland system I: The Bethe Ansatz method
    Takemura, K
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 235 (03) : 467 - 494
  • [3] The Heun Equation and the Calogero-Moser-Sutherland System I: The Bethe Ansatz Method
    Kouichi Takemura
    Communications in Mathematical Physics, 2003, 235 : 467 - 494
  • [4] Bethe ansatz diagonalization of the Heun-Racah operator
    Bernard, Pierre-Antoine
    Carcone, Gauvain
    Crampe, Nicolas
    Vinet, Luc
    LETTERS IN MATHEMATICAL PHYSICS, 2023, 113 (01)
  • [5] Heun operator of Lie type and the modified algebraic Bethe ansatz
    Bernard, Pierre-Antoine
    Crampe, Nicolas
    Kabakibo, Dounia Shaaban
    Vinet, Luc
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (08)
  • [6] Hirota equation and Bethe ansatz
    A. V. Zabrodin
    Theoretical and Mathematical Physics, 1998, 116 : 782 - 819
  • [7] Hirota equation and Bethe ansatz
    Zabrodin, AV
    THEORETICAL AND MATHEMATICAL PHYSICS, 1998, 116 (01) : 782 - 819
  • [8] A Fibration of the Hipercubic Lattice in Bethe Ansatz
    Milewski, Jan
    Ambrozko, Edward
    SYMMETRY AND STRUCTURAL PROPERTIES OF CONDENSED MATTER, 2008, 104
  • [9] Bethe Ansatz and classical Hirota equation
    Wiegmann, P
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1997, 11 (1-2): : 75 - 89
  • [10] Finite Type Modules and Bethe Ansatz Equations
    Feigin, Boris
    Jimbo, Michio
    Miwa, Tetsuji
    Mukhin, Eugene
    ANNALES HENRI POINCARE, 2017, 18 (08): : 2543 - 2579