Linear Independence of Values of a Certain Lambert Series

被引:0
|
作者
Peter Bundschuh
机构
[1] Mathematisches Institut der Universität,
来源
Results in Mathematics | 2007年 / 51卷
关键词
11J72; 11J82; Linear independence measures; Borwein’s analytic irrationality method for ; -series; Lambert series; cyclotomic polynomials;
D O I
暂无
中图分类号
学科分类号
摘要
Let K be \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\mathbb{Q}}$$ \end{document} or an imaginary quadratic number field, and q \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\in$$ \end{document} K an integer with |q| > 1. We give a quantitative version of the linear independence over K of the three numbers 1, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sum\nolimits_{k \geq 1} {1/(q^{2k - 1} + 1),}\, \sum\nolimits_{k \geq 1} {1/(q^{2k - 1} - 1)}$$ \end{document}, and an equivalent power series version. We also mention several open problems.
引用
收藏
页码:29 / 42
页数:13
相关论文
共 50 条
  • [31] Linear independence of the values of q-hypergeometric series and related functions
    Amou, M
    Väänänen, K
    RAMANUJAN JOURNAL, 2005, 9 (03): : 317 - 339
  • [32] On the linear independence of certain numbers
    P. L. Ivankov
    Mathematical Notes, 1997, 62 : 323 - 328
  • [33] Linear independence of certain numbers
    Veekesh Kumar
    Archiv der Mathematik, 2019, 112 : 377 - 385
  • [34] Linear independence of certain numbers
    Kumar, Veekesh
    ARCHIV DER MATHEMATIK, 2019, 112 (04) : 377 - 385
  • [35] Linear independence of certain numbers
    Kumar, Veekesh
    JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2020, 35 (01) : 17 - 22
  • [36] On the linear independence of certain numbers
    Ivankov, PL
    MATHEMATICAL NOTES, 1997, 62 (3-4) : 323 - 328
  • [37] On analytic functions defined by certain Lambert series
    Keuyver, JC
    PROCEEDINGS OF THE KONINKLIJKE AKADEMIE VAN WETENSCHAPPEN TE AMSTERDAM, 1922, 23 (6/9): : 1226 - 1233
  • [38] Linear independence of dilogarithmic values
    Viola, Carlo
    Zudilin, Wadim
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2018, 736 : 193 - 223
  • [39] On Linear Independence of Theta Values
    Masaaki Amou
    Keijo Väänänen
    Monatshefte für Mathematik, 2005, 144 : 1 - 11
  • [40] On linear independence of theta values
    Amou, M
    Väänänen, K
    MONATSHEFTE FUR MATHEMATIK, 2005, 144 (01): : 1 - 11