11J72;
11J82;
Linear independence measures;
Borwein’s analytic irrationality method for ;
-series;
Lambert series;
cyclotomic polynomials;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let K be \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$${\mathbb{Q}}$$
\end{document} or an imaginary quadratic number field, and q \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\in$$
\end{document} K an integer with |q| > 1. We give a quantitative version of the linear independence over K of the three numbers 1, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\sum\nolimits_{k \geq 1} {1/(q^{2k - 1} + 1),}\, \sum\nolimits_{k \geq 1} {1/(q^{2k - 1} - 1)}$$
\end{document}, and an equivalent power series version. We also mention several open problems.
机构:
Chinese Acad Sci, Chinese Acad Math & Syst Sci, Inst Appl Math, Beijing 100080, Peoples R ChinaChinese Acad Sci, Chinese Acad Math & Syst Sci, Inst Appl Math, Beijing 100080, Peoples R China
Zhu, YC
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY,
2001,
44
(06):
: 718
-
726