Circulant preconditioners for a kind of spatial fractional diffusion equations

被引:0
|
作者
Zhi-Wei Fang
Michael K. Ng
Hai-Wei Sun
机构
[1] Foshan University,School of Mathematics and Big Data
[2] Hong Kong Baptist University,Department of Mathematics
[3] University of Macau,Department of Mathematics
来源
Numerical Algorithms | 2019年 / 82卷
关键词
Fractional diffusion equation; Toeplitz matrix; Circulant preconditioner; Fast Fourier transform; Krylov subspace methods; 35R05; 65F08; 65F10; 65M06;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, circulant preconditioners are studied for discretized matrices arising from finite difference schemes for a kind of spatial fractional diffusion equations. The fractional differential operator is comprised of left-sided and right-sided derivatives with order in (12,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\frac {1}{2},1)$\end{document}. The resulting discretized matrices preserve Toeplitz-like structure and hence their matrix-vector multiplications can be computed efficiently by the fast Fourier transform. Theoretically, the spectra of the circulant preconditioned matrices are shown to be clustered around 1 under some conditions. Numerical experiments are presented to demonstrate that the preconditioning technique is very efficient.
引用
收藏
页码:729 / 747
页数:18
相关论文
共 50 条
  • [21] Circulant Preconditioners for Domain Integral Equations in Electromagnetics
    Remis, R. F.
    2012 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2012, : 337 - 340
  • [22] Circulant preconditioners for solving differential equations with multidelays
    Jin, XQ
    Lei, SL
    Wei, YM
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 47 (8-9) : 1429 - 1436
  • [23] Multigrid preconditioners for anisotropic space-fractional diffusion equations
    Donatelli, Marco
    Krause, Rolf
    Mazza, Mariarosa
    Trotti, Ken
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2020, 46 (03)
  • [24] Multilevel Circulant Preconditioner for High-Dimensional Fractional Diffusion Equations
    Lei, Siu-Long
    Chen, Xu
    Zhang, Xinhe
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2016, 6 (02) : 109 - 130
  • [25] Circulant-block preconditioners for solving ordinary differential equations
    Jin, XQ
    Sin, V
    Song, LL
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 140 (2-3) : 409 - 418
  • [26] Circulant preconditioners for solving singular perturbation delay differential equations
    Jin, XQ
    Lei, SL
    Wei, YM
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2005, 12 (2-3) : 327 - 336
  • [27] On TDS-PCG Iteration Method with Circulant Preconditioners for Solving the Space Fractional Coupled Nonlinear Schrodinger Equations
    Zhu, Mu-Zheng
    Zeng, Min-Li
    Qi, Ya-E
    Zhu, Rong-Qing
    ENGINEERING LETTERS, 2021, 29 (03) : 1072 - 1077
  • [28] Circulant wavelet preconditioners for solving elliptic differential equations and boundary integral equations
    Fadrani, DRV
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2003, 5 (02) : 255 - 271
  • [29] Diffusion equations and different spatial fractional derivatives
    Basanini Duarte, Alexandre Fernandes
    Gatti Pereira, Jessica de Melo
    Lenzi, Marcelo Kaminski
    Goncalves, Giane
    Rossato, Roberto
    Lenzi, Ervin Kaminski
    ACTA SCIENTIARUM-TECHNOLOGY, 2014, 36 (04) : 657 - 662
  • [30] Strang-type preconditioners for solving fractional diffusion equations by boundary value methods
    Gu, Xian-Ming
    Huang, Ting-Zhu
    Zhao, Xi-Le
    Li, Hou-Biao
    Li, Liang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 277 : 73 - 86