In this paper, circulant preconditioners are studied for discretized matrices arising from finite difference schemes for a kind of spatial fractional diffusion equations. The fractional differential operator is comprised of left-sided and right-sided derivatives with order in (12,1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$(\frac {1}{2},1)$\end{document}. The resulting discretized matrices preserve Toeplitz-like structure and hence their matrix-vector multiplications can be computed efficiently by the fast Fourier transform. Theoretically, the spectra of the circulant preconditioned matrices are shown to be clustered around 1 under some conditions. Numerical experiments are presented to demonstrate that the preconditioning technique is very efficient.
机构:
Univ Insubria, Dept Sci & High Technol, Via Valleggio 11, I-22100 Como, ItalyUniv Insubria, Dept Sci & High Technol, Via Valleggio 11, I-22100 Como, Italy
Donatelli, Marco
Krause, Rolf
论文数: 0引用数: 0
h-index: 0
机构:
Univ Svizzera Italiana, Fac Informat, Via Giuseppe Buffi 13, CH-6900 Lugano, SwitzerlandUniv Insubria, Dept Sci & High Technol, Via Valleggio 11, I-22100 Como, Italy
Krause, Rolf
Mazza, Mariarosa
论文数: 0引用数: 0
h-index: 0
机构:
Univ Insubria, Dept Sci & High Technol, Via Valleggio 11, I-22100 Como, ItalyUniv Insubria, Dept Sci & High Technol, Via Valleggio 11, I-22100 Como, Italy
Mazza, Mariarosa
Trotti, Ken
论文数: 0引用数: 0
h-index: 0
机构:
Univ Insubria, Dept Sci & High Technol, Via Valleggio 11, I-22100 Como, Italy
Univ Svizzera Italiana, Fac Informat, Via Giuseppe Buffi 13, CH-6900 Lugano, SwitzerlandUniv Insubria, Dept Sci & High Technol, Via Valleggio 11, I-22100 Como, Italy