Circulant preconditioners for a kind of spatial fractional diffusion equations

被引:0
|
作者
Zhi-Wei Fang
Michael K. Ng
Hai-Wei Sun
机构
[1] Foshan University,School of Mathematics and Big Data
[2] Hong Kong Baptist University,Department of Mathematics
[3] University of Macau,Department of Mathematics
来源
Numerical Algorithms | 2019年 / 82卷
关键词
Fractional diffusion equation; Toeplitz matrix; Circulant preconditioner; Fast Fourier transform; Krylov subspace methods; 35R05; 65F08; 65F10; 65M06;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, circulant preconditioners are studied for discretized matrices arising from finite difference schemes for a kind of spatial fractional diffusion equations. The fractional differential operator is comprised of left-sided and right-sided derivatives with order in (12,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\frac {1}{2},1)$\end{document}. The resulting discretized matrices preserve Toeplitz-like structure and hence their matrix-vector multiplications can be computed efficiently by the fast Fourier transform. Theoretically, the spectra of the circulant preconditioned matrices are shown to be clustered around 1 under some conditions. Numerical experiments are presented to demonstrate that the preconditioning technique is very efficient.
引用
收藏
页码:729 / 747
页数:18
相关论文
共 50 条
  • [1] Circulant preconditioners for a kind of spatial fractional diffusion equations
    Fang, Zhi-Wei
    Ng, Michael K.
    Sun, Hai-Wei
    NUMERICAL ALGORITHMS, 2019, 82 (02) : 729 - 747
  • [2] Diagonal and circulant or skew-circulant splitting preconditioners for spatial fractional diffusion equations
    Lu, Kang-Ya
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (04): : 4196 - 4218
  • [3] Diagonal and circulant or skew-circulant splitting preconditioners for spatial fractional diffusion equations
    Kang-Ya Lu
    Computational and Applied Mathematics, 2018, 37 : 4196 - 4218
  • [4] Block-circulant with circulant-block preconditioners for two-dimensional spatial fractional diffusion equations
    Ran, Yu-Hong
    Wu, Qian-Qian
    NUMERICAL ALGORITHMS, 2024, 97 (04) : 1935 - 1953
  • [5] Circulant-based approximate inverse preconditioners for a class of fractional diffusion equations
    Pang, Hong-Kui
    Qin, Hai-Hua
    Sun, Hai-Wei
    Ma, Ting-Ting
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 85 : 18 - 29
  • [6] A circulant preconditioner for fractional diffusion equations
    Lei, Siu-Long
    Sun, Hai-Wei
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 242 : 715 - 725
  • [7] Fast matrix splitting preconditioners for higher dimensional spatial fractional diffusion equations
    Bai, Zhong-Zhi
    Lu, Kang-Ya
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 404
  • [8] An implicit integration factor method for a kind of spatial fractional diffusion equations
    Zhao, Yongliang
    Zhu, Peiyong
    Gu, Xianming
    Zhao, Xile
    Jian, Huanyan
    SECOND INTERNATIONAL CONFERENCE ON PHYSICS, MATHEMATICS AND STATISTICS, 2019, 1324
  • [9] On structure preserving and circulant preconditioners for the space fractional coupled nonlinear Schrodinger equations
    Wang, Jun-Gang
    Ran, Yu-Hong
    Wang, Dong-Ling
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2018, 25 (04)
  • [10] Block ω-circulant preconditioners for parabolic equations
    Fung, Po Yin
    Hon, Sean Y.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2025, 182 : 122 - 138