The study of coefficient estimates and Fekete–Szegö inequalities for the new classes of m-fold symmetric bi-univalent functions defined using an operator

被引:0
|
作者
Daniel Breaz
Luminiţa-Ioana Cotîrlă
机构
[1] 1 Decembrie 1918 University,Department of Mathematics
[2] Technical University of Cluj-Napoca,Department of Mathematics
关键词
Analytic functions; Bi-univalent functions; Fekete–Szegö functional; m-fold symmetric; Coefficient estimates; Coefficient bounds; 30C45; 30C50;
D O I
暂无
中图分类号
学科分类号
摘要
The objective of this paper is to introduce new classes of m-fold symmetric bi-univalent functions. We discuss estimates on the Taylor–Maclaurin coefficients |am+1|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$|a_{m+1}|$\end{document} and |a2m+1|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$|a_{2m+1}|$\end{document}, and the Fekete–Szegő problem is also considered for the new classes of functions introduced. We denote these classes by MF−SΣ,mp,q(h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$MF-S_{\Sigma ,m}^{p,q}(h)$\end{document}, MF−SΣ,mp,q(s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$MF-S_{\Sigma , m}^{p,q}(s)$\end{document}, and MF−SΣ,mb,d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$MF-S_{\Sigma , m}^{b,d}$\end{document}. Quantum calculus aspects are also considered in this study to enhance its novelty and to obtain more interesting results.
引用
收藏
相关论文
共 50 条
  • [41] Note on bounds on the coefficients of a subclass of m-fold symmetric bi-univalent functions
    Zireh, Ahmad
    Hajiparvaneh, Saideh
    Bulut, Serap
    JOURNAL OF APPLIED ANALYSIS, 2024, 30 (01) : 187 - 195
  • [42] Fekete–Szegö functional problems for some subclasses of bi-univalent functions defined by Frasin differential operator
    Feras Yousef
    Tariq Al-Hawary
    G. Murugusundaramoorthy
    Afrika Matematika, 2019, 30 : 495 - 503
  • [43] Extensions of coefficient estimates for new classes of bi-univalent functions defined by Salagean integro-differential operator
    Pall-Szabo, Agnes Orsolya
    JOURNAL OF APPLIED ANALYSIS, 2021, 27 (01) : 87 - 95
  • [44] Some m-fold symmetric bi-univalent function classes and their associated Taylor-Maclaurin coefficient bounds
    Srivastava, Hari Mohan
    Sabir, Pishtiwan Othman
    Eker, Sevtap Suemer
    Wanas, Abbas Kareem
    Mohammed, Pshtiwan Othman
    Chorfi, Nejmeddine
    Baleanu, Dumitru
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2024, 2024 (01)
  • [45] Coefficient bounds and Fekete–Szegö problem for qualitative subclass of bi-univalent functions
    Tariq Al-Hawary
    Afrika Matematika, 2022, 33
  • [46] Coefficient Bounds and Fekete-Szegö Inequalities for a Two Families of Bi-Univalent Functions Related to Gegenbauer Polynomials
    Almalki, Yahya
    Wanas, Abbas Kareem
    Shaba, Timilehin Gideon
    Lupas, Alina Alb
    Abdalla, Mohamed
    AXIOMS, 2023, 12 (11)
  • [47] A Special Family of m-Fold Symmetric Bi-Univalent Functions Satisfying Subordination Condition
    Aldawish, Ibtisam
    Swamy, Sondekola Rudra
    Frasin, Basem Aref
    FRACTAL AND FRACTIONAL, 2022, 6 (05)
  • [48] Coefficient estimates for m-fold symmetric bi-subordinate functions
    Adegani, Ebrahim A.
    Hamidi, Samaneh G.
    Jahangiri, Jay M.
    Zireh, Ahmad
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 48 (02): : 365 - 371
  • [49] Fekete–Szegö problem for certain classes of Ma-Minda bi-univalent functions
    Orhan H.
    Magesh N.
    Balaji V.K.
    Afrika Matematika, 2016, 27 (5-6) : 889 - 897
  • [50] BOUNDS FOR INITIAL MACLAURIN COEFFICIENTS FOR A NEW SUBCLASSES OF ANALYTIC AND M-FOLD SYMMETRIC BI-UNIVALENT FUNCTIONS
    Wanas, Abbas Kareem
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2020, 10 (02): : 305 - 311