The objective of this paper is to introduce new classes of m-fold symmetric bi-univalent functions. We discuss estimates on the Taylor–Maclaurin coefficients |am+1|\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$|a_{m+1}|$\end{document} and |a2m+1|\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$|a_{2m+1}|$\end{document}, and the Fekete–Szegő problem is also considered for the new classes of functions introduced. We denote these classes by MF−SΣ,mp,q(h)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$MF-S_{\Sigma ,m}^{p,q}(h)$\end{document}, MF−SΣ,mp,q(s)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$MF-S_{\Sigma , m}^{p,q}(s)$\end{document}, and MF−SΣ,mb,d\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$MF-S_{\Sigma , m}^{b,d}$\end{document}. Quantum calculus aspects are also considered in this study to enhance its novelty and to obtain more interesting results.