The study of coefficient estimates and Fekete–Szegö inequalities for the new classes of m-fold symmetric bi-univalent functions defined using an operator

被引:0
|
作者
Daniel Breaz
Luminiţa-Ioana Cotîrlă
机构
[1] 1 Decembrie 1918 University,Department of Mathematics
[2] Technical University of Cluj-Napoca,Department of Mathematics
关键词
Analytic functions; Bi-univalent functions; Fekete–Szegö functional; m-fold symmetric; Coefficient estimates; Coefficient bounds; 30C45; 30C50;
D O I
暂无
中图分类号
学科分类号
摘要
The objective of this paper is to introduce new classes of m-fold symmetric bi-univalent functions. We discuss estimates on the Taylor–Maclaurin coefficients |am+1|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$|a_{m+1}|$\end{document} and |a2m+1|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$|a_{2m+1}|$\end{document}, and the Fekete–Szegő problem is also considered for the new classes of functions introduced. We denote these classes by MF−SΣ,mp,q(h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$MF-S_{\Sigma ,m}^{p,q}(h)$\end{document}, MF−SΣ,mp,q(s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$MF-S_{\Sigma , m}^{p,q}(s)$\end{document}, and MF−SΣ,mb,d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$MF-S_{\Sigma , m}^{b,d}$\end{document}. Quantum calculus aspects are also considered in this study to enhance its novelty and to obtain more interesting results.
引用
收藏
相关论文
共 50 条