Multi-classification approach for lung nodule detection and classification with proposed texture feature in X-ray images

被引:0
|
作者
Mary Jaya VJ
Krishnakumar S
机构
[1] Assumption Autonomous College,Department of Computer Science
[2] Mahatma Gandhi University Research Centre,Department of Electronics, School of Technology and Applied Sciences
来源
关键词
Lung cancer; Improved BIRCH; Proposed LVP features; Optimized CNN; CP-BSA Algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
Lung cancer is a widespread type of cancer around the world. It is, moreover, a lethal type of tumor. Nevertheless, analysis signifies that earlier recognition of lung cancer considerably develops the possibilities of survival. By deploying X-rays and Computed Tomography (CT) scans, radiologists could identify hazardous nodules at an earlier period. However, when more citizens adopt these diagnoses, the workload rises for radiologists. Computer Assisted Diagnosis (CAD)-based detection systems can identify these nodules automatically and could assist radiologists in reducing their workloads. However, they result in lower sensitivity and a higher count of false positives. The proposed work introduces a new approach for Lung Nodule (LN) detection. At first, Histogram Equalization (HE) is done during pre-processing. As the next step, improved Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) based segmentation is done. Then, the characteristics, including “Gray Level Run-Length Matrix (GLRM), Gray Level Co-Occurrence Matrix (GLCM), and the proposed Local Vector Pattern (LVP),” are retrieved. These features are then categorized utilizing an optimized Convolutional Neural Network (CNN) and itdetectsnodule or non-nodule images. Subsequently, Long Short-Term Memory (LSTM) is deployed to categorize nodule types (benign, malignant, or normal). The CNN weights are fine-tuned by the Chaotic Population-based Beetle Swarm Algorithm (CP-BSA). Finally, the superiority of the proposed approach is confirmed across various measures. The developed approach has exhibited a high precision value of 0.9575 for the best case scenario, and high sensitivity value of 0.9646 for the mean case scenario. The superiority of the proposed approach is confirmed across various measures.
引用
收藏
页码:3497 / 3524
页数:27
相关论文
共 50 条
  • [31] A Deep Learning Approach for Breast Invasive Ductal Carcinoma Detection and Lymphoma Multi-Classification in Histological Images
    Brancati, Nadia
    De Pietro, Giuseppe
    Frucci, Maria
    Riccio, Daniel
    IEEE ACCESS, 2019, 7 : 44709 - 44720
  • [32] An adaptive feature extraction method for classification of Covid-19 X-ray images
    Gundogar, Zeynep
    Eren, Furkan
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (04) : 899 - 906
  • [33] An adaptive feature extraction method for classification of Covid-19 X-ray images
    Zeynep Gündoğar
    Furkan Eren
    Signal, Image and Video Processing, 2023, 17 : 899 - 906
  • [34] Feature Extraction and Classification of Chest X-Ray Images Using CNN to Detect Pneumonia
    Sharma, Harsh
    Jain, Jai Sethia
    Bansal, Priti
    Gupta, Sumit
    PROCEEDINGS OF THE CONFLUENCE 2020: 10TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING, 2020, : 227 - 231
  • [35] A new feature extraction method for classification of agricultural products from X-ray images
    Talukder, A
    Casasent, D
    Lee, HW
    Keagy, PM
    Schatzki, TF
    PRECISION AGRICULTURE AND BIOLOGICAL QUALITY, 1999, 3543 : 119 - 130
  • [36] A binary sparrow search algorithm for feature selection on classification of X-ray security images
    Babalik, Ahmet
    Babadag, Aybuke
    APPLIED SOFT COMPUTING, 2024, 158
  • [37] Material classification in X-ray images based on multi-scale CNN
    Emil Benedykciuk
    Marcin Denkowski
    Krzysztof Dmitruk
    Signal, Image and Video Processing, 2021, 15 : 1285 - 1293
  • [38] Material classification in X-ray images based on multi-scale CNN
    Benedykciuk, Emil
    Denkowski, Marcin
    Dmitruk, Krzysztof
    SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (06) : 1285 - 1293
  • [39] Deep Hierarchical Multi-label Classification of Chest X-ray Images
    Chen, Haomin
    Miao, Shun
    Xu, Daguang
    Hager, Gregory D.
    Harrison, Adam P.
    INTERNATIONAL CONFERENCE ON MEDICAL IMAGING WITH DEEP LEARNING, VOL 102, 2019, 102 : 109 - 120
  • [40] PneumoniaNet: Automated Detection and Classification of Pediatric Pneumonia Using Chest X-ray Images and CNN Approach
    Alsharif, Roaa
    Al-Issa, Yazan
    Alqudah, Ali Mohammad
    Qasmieh, Isam Abu
    Mustafa, Wan Azani
    Alquran, Hiam
    ELECTRONICS, 2021, 10 (23)