The canonical controller for distributed systems

被引:0
|
作者
Shiva Shankar
机构
[1] IIT Bombay,Department of Electrical Engineering
关键词
Achievable behaviours; Partial differential and difference equations; Maxwell equations; 93B10; 93C20; 93B25;
D O I
暂无
中图分类号
学科分类号
摘要
This paper generalises results of Willems–Trentelman, and van der Schaft, on achievable behaviours, to the case of linear distributed systems defined by partial differential or difference equations. It shows that the ‘minimal’ controller which achieves a particular subsystem is the canonical controller of van der Schaft, thereby answering the ‘open problem’ of van der Schaft (Syst Control Lett 49:141–149, 2003) in the setting of infinite dimensional and n-D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-D$$\end{document} systems. This result is used to describe the collection of all linear subsystems of the electro-magnetic field, containing the vacuum solutions, that can be achieved by suitable choices of electric charge and current density.
引用
收藏
页码:303 / 311
页数:8
相关论文
共 50 条
  • [21] Distributed Observer and Controller Design for Spatially Interconnected Systems
    Zhang, Xueji
    Hengster-Movric, Kristian
    Sebek, Michael
    Desmet, Wim
    Faria, Cassio
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2019, 27 (01) : 1 - 13
  • [22] Controller Synthesis for Distributed Systems over Undirected Graphs
    Holicki, Tobias
    Scherer, Carsten W.
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 5238 - 5244
  • [23] Investigating the Controller Interactions of Distribution Systems with Distributed Generation
    Roy, N. K.
    Pota, H. R.
    IFAC PAPERSONLINE, 2015, 48 (30): : 19 - 24
  • [24] The canonical controller and its regularity
    Willems, JC
    Belur, MN
    Julius, AA
    Trentelman, HL
    42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, : 1639 - 1644
  • [25] STATE ESTIMATION FOR MISO NON-LINEAR SYSTEMS IN CONTROLLER CANONICAL FORM
    Schwaller, Benoit
    Ensminger, Denis
    Dresp-Langley, Birgitta
    Ragot, Jose
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2016, 26 (03) : 569 - 583
  • [26] CANONICAL EQUATIONS FOR BOUNDARY FEEDBACK CONTROL OF STOCHASTIC DISTRIBUTED PARAMETER SYSTEMS
    SHOLAR, MS
    WIBERG, DM
    AUTOMATICA, 1972, 8 (03) : 287 - &
  • [27] CANONICAL-FORMS FOR A CLASS OF DISTRIBUTED PARAMETER CONTROL-SYSTEMS
    REBARBER, R
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1988, 26 (06) : 1362 - 1387
  • [28] Distributed Controller Design for LPV/LFT Distributed Systems in Input-Output Form
    Liu, Qin
    Abbas, Hossam S.
    Velni, Javad Mohammadpour
    Werner, Herbert
    IFAC PAPERSONLINE, 2017, 50 (01): : 11409 - 11414
  • [29] IMC Based Robust Controller Design for Distributed Parameter Systems
    Belavy, Cyril
    Vitalos, Filip
    Vlcek, Marcel
    Lel'o, Stanislav
    Michalecko, Marek
    2013 INTERNATIONAL CONFERENCE ON PROCESS CONTROL (PC), 2013, : 286 - 291
  • [30] Distributed Suboptimal Controller Synthesis for Multi-agent Systems
    Zhang, Fangfang
    Wang, Wei
    Zhang, Huanshui
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2015, 13 (03) : 634 - 642