Unsupervised Deep Learning for Binary Offloading in Mobile Edge Computation Network

被引:0
|
作者
Xue Chen
Hongbo Xu
Guoping Zhang
Yun Chen
Ruijie Li
机构
[1] Central China Normal University,College of Physical Science and Technology
来源
关键词
MEC; Binary offloading decision; Unsupervised deep learning; Auxiliary network;
D O I
暂无
中图分类号
学科分类号
摘要
Mobile edge computation (MEC) is a potential technology to reduce the energy consumption and task execution delay for tackling computation-intensive tasks on mobile device (MD). The resource allocation of MEC is an optimization problem, however, the existing large amount of computation may hinder its practical application. In this work, we propose a multiuser MEC framework based on unsupervised deep learning to reduce energy consumption and computation by offloading tasks to edge servers. The binary offloading decision and resource allocation are jointly optimized to minimize energy consumption of MDs under latency constraint and transmit power constraint. This joint optimization problem is a mixed integer nonconvex problem which result in the gradient vanishing problem in backpropagation. To address this, we propose a novel binary computation offloading scheme (BCOS), in which a deep neural network (DNN) with an auxiliary network is designed. By using the auxiliary network as a teacher network, the student network can obtain the lossless gradient information in joint training phase. As a result, the sub-optimal solution of the optimization problem can be acquired by the learning-based BCOS. Simulation results demonstrate that the BCOS is effective to solve the binary offloading problem by the trained network with low complexity.
引用
收藏
页码:1841 / 1860
页数:19
相关论文
共 50 条
  • [1] Unsupervised Deep Learning for Binary Offloading in Mobile Edge Computation Network
    Chen, Xue
    Xu, Hongbo
    Zhang, Guoping
    Chen, Yun
    Li, Ruijie
    WIRELESS PERSONAL COMMUNICATIONS, 2022, 124 (02) : 1841 - 1860
  • [2] Computation Offloading for Mobile Edge Computing: A Deep Learning Approach
    Yu, Shuai
    Wang, Xin
    Langar, Rami
    2017 IEEE 28TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR, AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2017,
  • [3] Intelligent Edge: Leveraging Deep Imitation Learning for Mobile Edge Computation Offloading
    Yu, Shuai
    Chen, Xu
    Yang, Lei
    Wu, Di
    Bennis, Mehdi
    Zhang, Junshan
    IEEE WIRELESS COMMUNICATIONS, 2020, 27 (01) : 92 - 99
  • [4] Dynamic Computation Offloading with Deep Reinforcement Learning in Edge Network
    Bai, Yang
    Li, Xiaocui
    Wu, Xinfan
    Zhou, Zhangbing
    APPLIED SCIENCES-BASEL, 2023, 13 (03):
  • [5] Binary Computation Offloading in Edge Computing Using Deep Reinforcement Learning
    Rajwar, Dipankar
    Kumar, Dinesh
    ADVANCED NETWORK TECHNOLOGIES AND INTELLIGENT COMPUTING, ANTIC 2023, PT II, 2024, 2091 : 215 - 227
  • [6] Deep reinforcement learning for computation offloading in mobile edge computing environment
    Chen, Miaojiang
    Wang, Tian
    Zhang, Shaobo
    Liu, Anfeng
    COMPUTER COMMUNICATIONS, 2021, 175 (175) : 1 - 12
  • [7] Learning for Computation Offloading in Mobile Edge Computing
    Dinh, Thinh Quang
    La, Quang Duy
    Quek, Tony Q. S.
    Shin, Hyundong
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2018, 66 (12) : 6353 - 6367
  • [8] A Deep Reinforcement Learning Approach for Online Computation Offloading in Mobile Edge Computing
    Zhang, Yameng
    Liu, Tong
    Zhu, Yanmin
    Yang, Yuanyuan
    2020 IEEE/ACM 28TH INTERNATIONAL SYMPOSIUM ON QUALITY OF SERVICE (IWQOS), 2020,
  • [9] A Deep Reinforcement Learning Approach Towards Computation Offloading for Mobile Edge Computing
    Wang, Qing
    Tan, Wenan
    Qin, Xiaofan
    HUMAN CENTERED COMPUTING, 2019, 11956 : 419 - 430
  • [10] On using Edge Computing for computation offloading in mobile network
    Messaoudi, Farouk
    Ksentini, Adlen
    Bertin, Philippe
    GLOBECOM 2017 - 2017 IEEE GLOBAL COMMUNICATIONS CONFERENCE, 2017,