Tilings of the plane and Thurston semi-norm

被引:0
|
作者
Jean-René Chazottes
Jean-Marc Gambaudo
François Gautero
机构
[1] CNRS-École Polytechnique,Centre de Physique Théorique
[2] Université Nice Sophia Antipolis-CNRS,INLN
[3] Université Nice Sophia Antipolis-CNRS,Laboratoire J.A. Dieudonné
来源
Geometriae Dedicata | 2014年 / 173卷
关键词
Euclidean tilings; Branched surfaces; Translation surfaces; 52C20; 57M12;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the problem of tiling the Euclidean plane with a finite set of polygons (up to translation) boils down to prove the existence of zeros of a non-negative convex function defined on a finite-dimensional simplex. This function is a generalisation, in the framework of branched surfaces, of the Thurston semi-norm originally defined for compact 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3$$\end{document}-manifolds.
引用
收藏
页码:129 / 142
页数:13
相关论文
共 50 条