An approximation algorithm for genome sorting by reversals to recover all adjacencies

被引:0
|
作者
Shanshan Zhai
Peng Zhang
Daming Zhu
Weitian Tong
Yao Xu
Guohui Lin
机构
[1] Shandong University,School of Computer Science and Technology
[2] Georgia Southern University,Department of Computer Science
[3] University of Alberta,Department of Computing Science
来源
关键词
Genome rearrangement; Sorting by reversals; Gene adjacency; Maximum matching; Alternating cycle;
D O I
暂无
中图分类号
学科分类号
摘要
Genome rearrangement problems have been extensively studied for more than two decades, intended to understand the species evolutionary relationships in terms of the long range genetic mutations at the genome level. While most earlier studies focus on the simplified genomes ignoring gene duplicates, thousands of whole genome sequencing projects reveal that a genome typically carries multiple gene duplicates distributed in various ways along the genome. Given a source genome and a target genome such that one is a re-ordering of the genes in the other, we measure the evolutionary distance by the minimum number of reversals applied on the source genome to recover all the gene adjacencies in the target genome. We define this optimization problem as sorting by reversals to recover all adjacencies, or SBR2RA in short. We show that SBR2RA is APX-hard and uncover some similarities and differences to the classic counterpart, the sorting by reversals problem. From the approximability perspective, we present a 2α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2 \alpha $$\end{document}-approximation algorithm, where α∈[1,2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in [1, 2]$$\end{document} is the best approximation ratio for a related optimization problem which is suspected to be NP-hard.
引用
收藏
页码:1170 / 1190
页数:20
相关论文
共 50 条
  • [31] SORTING BY REVERSALS - GENOME REARRANGEMENTS IN PLANT ORGANELLES AND EVOLUTIONARY HISTORY OF X-CHROMOSOME
    BAFNA, V
    PEVZNER, PA
    MOLECULAR BIOLOGY AND EVOLUTION, 1995, 12 (02) : 239 - 246
  • [32] Opposition-Based Memetic Algorithm and Hybrid Approach for Sorting Permutations by Reversals
    Soncco-Alvarez, Jose Luis
    Munoz, Daniel M.
    Ayala-Rincon, Mauricio
    EVOLUTIONARY COMPUTATION, 2019, 27 (02) : 229 - 265
  • [33] AN ALGORITHM TO GENERATE ALL TOPOLOGICAL SORTING ARRANGEMENTS
    VAROL, YL
    ROTEM, D
    COMPUTER JOURNAL, 1981, 24 (01): : 83 - 84
  • [34] A Faster 1.375-Approximation Algorithm for Sorting by Transpositions
    Cunha, Luis Felipe I.
    Kowada, Luis Antonio B.
    Hausen, Rodrigo De A.
    De Figueiredo, Celina M. H.
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2015, 22 (11) : 1044 - 1056
  • [35] A new 1.375-approximation algorithm for sorting by transpositions
    Luiz Augusto G. Silva
    Luis Antonio B. Kowada
    Noraí Romeu Rocco
    Maria Emília M. T. Walter
    Algorithms for Molecular Biology, 17
  • [36] A simpler 1.5-approximation algorithm for sorting by transpositions
    Hartman, T
    COMBINATORIAL PATTERN MATCHING, PROCEEDINGS, 2003, 2676 : 156 - 169
  • [37] SA New Approximation Algorithm for Unsigned Translocation Sorting
    Pu, Lianrong
    Zhu, Daming
    Jiang, Haitao
    ALGORITHMS IN BIOINFORMATICS, 2016, 9838 : 269 - 280
  • [38] A new 1.375-approximation algorithm for sorting by transpositions
    Silva, Luiz Augusto G.
    Kowada, Luis Antonio B.
    Rocco, Norai Romeu
    Walter, Maria Emilia M. T.
    ALGORITHMS FOR MOLECULAR BIOLOGY, 2022, 17 (01)
  • [39] A 1.375-approximation algorithm for unsigned translocation sorting
    Pu, Lianrong
    Zhu, Daming
    Jiang, Haitao
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2020, 113 : 163 - 178
  • [40] A 3.5-Approximation Algorithm for Sorting by Intergenic Transpositions
    Oliveira, Andre Rodrigues
    Jean, Geraldine
    Fertin, Guillaume
    Brito, Klairton Lima
    Dias, Ulisses
    Dias, Zanoni
    ALGORITHMS FOR COMPUTATIONAL BIOLOGY (ALCOB 2020), 2020, 12099 : 16 - 28