Tb theorems for Triebel-Lizorkin spaces over special spaces of homogeneous type and their applications

被引:0
|
作者
Yanchang Han
机构
[1] South China Normal University,School of Mathematical Sciences
来源
Collectanea mathematica | 2008年 / 59卷
关键词
theorem; Triebel-Lizorkin spaces; Calderón reproducing formula; Plancherel-Pôlya inequalities; 42B25; 42B35; 46E35;
D O I
暂无
中图分类号
学科分类号
摘要
The author first establishes theTb theorems for Triebel-Lizorkin spaces by the discrete Calderón type reproducing formula and the Plancherel-Pôlya characterization for the Triebel-Lizorkin spaces. As an application of theTb theorems, new characterizations of Triebel-Lizorkin spaces with minimum regularity and cancellation conditions are given over special spaces of homogeneous type.
引用
收藏
页码:63 / 78
页数:15
相关论文
共 50 条
  • [41] TRIEBEL-LIZORKIN TYPE SPACES WITH VARIABLE EXPONENTS
    Yang, Dachun
    Zhuo, Ciqiang
    Yuan, Wen
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2015, 9 (04) : 146 - 202
  • [42] Riesz Potentials in Besov and Triebel–Lizorkin Spaces over Spaces of Homogeneous Type
    Dachun Yang
    Potential Analysis, 2003, 19 : 193 - 210
  • [43] T1 THEOREMS FOR BESOV AND TRIEBEL-LIZORKIN SPACES
    HAN, YS
    HOFMANN, S
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 337 (02) : 839 - 853
  • [44] Geometric Characterizations of Embedding Theorems: For Sobolev, Besov, and Triebel-Lizorkin Spaces on Spaces of Homogeneous Type-via Orthonormal Wavelets
    Han, Yanchang
    Han, Yongsheng
    He, Ziyi
    Li, Ji
    Pereyra, Cristina
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (09) : 8947 - 8978
  • [45] Weighted embedding theorems for radial Besov and Triebel-Lizorkin spaces
    De Napoli, Pablo L.
    Drelichman, Irene
    Saintier, Nicolas
    STUDIA MATHEMATICA, 2016, 233 (01) : 47 - 65
  • [46] Embedding Theorem for In homogeneous Besov and Triebel-Lizorkin Spaces on RD-spaces
    Han, Yanchang
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2015, 58 (04): : 757 - 773
  • [47] INEQUALITIES IN HOMOGENEOUS TRIEBEL-LIZORKIN AND BESOV-LIPSCHITZ SPACES
    Wang, Lifeng
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (04) : 1318 - 1393
  • [48] Functional characterizations of realized homogeneous Besov and Triebel-Lizorkin spaces
    Gheribi, Bochra
    Moussai, Madani
    FILOMAT, 2024, 38 (13) : 4417 - 4440
  • [49] SINGULAR INTEGRALS RELATED TO HOMOGENEOUS MAPPINGS IN TRIEBEL-LIZORKIN SPACES
    Liu, Feng
    Wu, Huoxiong
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2017, 11 (04): : 1075 - 1097
  • [50] ON BOUNDEDNESS OF SUPERPOSITION OPERATORS IN SPACES OF TRIEBEL-LIZORKIN TYPE
    SICKEL, W
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1989, 39 (02) : 323 - 347