A 35 Gb/s junction-less dual parallel Mach-Zehnder modulator for short reach interconnects

被引:0
|
作者
Soumi Saha
Rohan Roy
Subhradeep Pal
机构
[1] UEM,Department of Electronics and Communication Engineering
[2] KIIT,School of Electronics Engineering
[3] BITS-Pilani,Department of Electrical and Electronics Engineering
来源
Microsystem Technologies | 2021年 / 27卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
An electrostatic doping (ED) based 35 Gb/s dual-parallel Mach-Zehnder modulator (DP-MZM) for photonic integrated circuits (PICs) is proposed and analyzed. Theoretical formulation of the transfer function and linearity analysis of the proposed modulator is also presented here. The proposed modulator contains two ED-aided sub-MZMs and an ED-aided optical phase shifter (PS) in a MZI structure. Numerical simulations are performed using commercially available tools and the simulation results are presented here. From the results we estimate that the proposed DP-MZM with 400 μm long sub-MZMs can offer peak dynamic extinction ratio (ER) of 14 dB with maximum 8.7 dB of insertion loss (IL) at 10 Gb/s data rate. Using dual-tone test method, the predicted spurious free dynamic range (SFDR) of the modulator are 62.74 dB·Hz1/2 and 99.35 dB·Hz2/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{2/3}$$\end{document} for second and third harmonic intermodulation distortions (IMD2 and IMD3), respectively. From the transient analysis, the estimated maximum operating frequency and 3-dB EO bandwidth of the modulator are approximately 35.5 GHz and 32.37 GHz, respectively. At maximum data rate, 5.89 dB of dynamic ER is offered by the proposed DP-MZM for OOK modulation. Simulation verifies successful transmission of 25 Gb/s OOK modulated PRBS data stream over a 10 km standard single mode fiber (SSMF) link. Furthermore, we have shown that the proposed DP-MZM is capable of generating 50 Gb/s PAM-4 signal, which makes the modulator suitable for next-generation short-reach interconnects.
引用
收藏
页码:3793 / 3800
页数:7
相关论文
共 50 条
  • [21] Tunable dual-parallel Mach-Zehnder modulator with ultra linearity and high tolerance
    Yue, Peng
    Mao, Bomin
    Hou, Fanfan
    Liu, Zengji
    JOURNAL OF MODERN OPTICS, 2015, 62 (10) : 778 - 785
  • [22] Variable Optical Frequency Comb Source Using a Dual Parallel Mach-Zehnder Modulator
    O'Riordan, Colm
    Fabbri, Simon J.
    Ellis, Andrew D.
    2011 13TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON), 2011,
  • [23] Automatic Bias Control of a Silicon Photonics Dual Parallel Mach-Zehnder Optical Modulator
    Zhu, Shi-Chao
    Yu, Sheng
    Lei, Xun
    Lu, Luluzi
    Cao, Quan
    AOPC 2021: MICRO-OPTICS AND MOEMS, 2021, 12066
  • [24] A flexible waveforms generator based on a single dual-parallel Mach-Zehnder modulator
    Yan, Juanjuan
    Xia, Zhenya
    Zhang, Shihu
    Bai, Ming
    Zheng, Zheng
    OPTICS COMMUNICATIONS, 2015, 334 : 31 - 34
  • [25] Silicon intensity Mach-Zehnder modulator for single lane 100 Gb/s applications
    Li, Miaofeng
    Wang, Lei
    Li, Xiang
    Xiao, Xi
    Yu, Shaohua
    PHOTONICS RESEARCH, 2018, 6 (02) : 109 - 116
  • [26] A 30 Gb/s Monolithic Traveling-Wave Amplified Mach-Zehnder Modulator
    Hosseinzadeh, Navid
    Schow, Clint
    Buckwalter, James F.
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2021,
  • [27] 12.5 Gb/s carrier-injection silicon Mach-Zehnder optical modulator
    陈红涛
    丁建峰
    杨林
    Journal of Semiconductors, 2012, 33 (11) : 57 - 59
  • [28] 12.5 Gb/s carrier-injection silicon Mach-Zehnder optical modulator
    陈红涛
    丁建峰
    杨林
    Journal of Semiconductors, 2012, (11) : 57 - 59
  • [29] 12.5 Gb/s carrier-injection silicon Mach-Zehnder optical modulator
    Chen Hongtao
    Ding Jianfeng
    Yang Lin
    JOURNAL OF SEMICONDUCTORS, 2012, 33 (11)
  • [30] Dual-Chirp Microwave Waveform Generation Using a Dual-Parallel Mach-Zehnder Modulator
    Zhu, Dan
    Yao, Jianping
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2015, 27 (13) : 1410 - 1413