Ni/La2O3-ZrO2 catalyst for hydrogen production from steam reforming of acetic acid as a model compound of bio-oil

被引:0
|
作者
Ya-ping Xue
Chang-feng Yan
Xiao-yong Zhao
Shi-lin Huang
Chang-qing Guo
机构
[1] Chinese Academy of Sciences,Guangzhou Institute of Energy Conversion
[2] Chinese Academy of Sciences,Key Laboratory of Renewable Energy
[3] Guangdong Key Laboratory of New and Renewable Energy Research and Development,undefined
[4] University of Chinese Academy of Sciences,undefined
来源
关键词
Hydrogen Production; Ni/La; O; -ZrO; Catalyst; Steam Reforming; Bio-oil; Acetic Acid;
D O I
暂无
中图分类号
学科分类号
摘要
Hydrogen production from steam reforming of acetic acid was investigated over Ni/La2O3-ZrO2 catalyst. A series of Ni/La2O3-ZrO2 catalysts were synthesized by sol-gel method coupled with wet impregnation, which was characterized by XRD, BET, TEM, EDS, TG, SEM and TPR. Catalytic activity of Ni/La2O3-ZrO2 was evaluated by steam reforming of acetic acid at the temperature range of 550-750 °C. The tetragonal phase La0.1Zr0.9O1.95 is formed through the doping of La2O3 into the ZrO2 lattice and nickel species are highly dispersed on the support with high specific surface area. H2 yield and CO2 yield of Ni/La2O3-ZrO2 catalyst with 15%wt Ni reaches 89.27% and 80.41% at 600 °C, respectively, which is attributed to high BET surface area and sufficient Ni active sites in strong interaction with the support. 15%wt Ni supported on La2O3-ZrO2 catalyst maintains relatively stable catalytic activities for a period of 20 h.
引用
收藏
页码:305 / 313
页数:8
相关论文
共 50 条
  • [41] Effect of Coal Ash on the Steam Reforming of Simulated Bio-oil for Hydrogen Production over Ni/γ-Al2O3
    Zhang, Fan
    Wang, Shurong
    Chen, Junhao
    Wang, Yurong
    Ru, Bin
    Zhu, Lingjun
    BIORESOURCES, 2016, 11 (03): : 6808 - 6821
  • [42] Effects of Preparation Method on the Performance of Ni/Al2O3 Catalysts for Hydrogen Production by Bio-Oil Steam Reforming
    Li, Xinbao
    Wang, Shurong
    Cai, Qinjie
    Zhu, Lingjun
    Yin, Qianqian
    Luo, Zhongyang
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2012, 168 (01) : 10 - 20
  • [43] Catalytic steam reforming of bio-oil model compounds for hydrogen production over coal ash supported Ni catalyst
    Wang, Shurong
    Zhang, Fan
    Cai, Qinjie
    Li, Xinbao
    Zhu, Lingjun
    Wang, Qi
    Luo, Zhongyang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (05) : 2018 - 2025
  • [44] Steam Reforming of Bio-Oil or Its Model Compounds for Hydrogen Production
    Hu Xun
    Lv Gongxuan
    PROGRESS IN CHEMISTRY, 2010, 22 (09) : 1687 - 1700
  • [45] Sustainable hydrogen production from steam reforming of bio-oil model compound based on carbon deposition/elimination
    Wu, Ceng
    Liu, Ronghou
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (04) : 2860 - 2868
  • [46] Operating conditions for attenuating Ni/La2O3-αAl2O3 catalyst deactivation in the steam reforming of bio-oil aqueous fraction
    Remiro, Aingeru
    Valle, Beatriz
    Aguayo, A. T.
    Bilbao, Javier
    Gayubo, Ana G.
    FUEL PROCESSING TECHNOLOGY, 2013, 115 : 222 - 232
  • [47] Catalysts of Ni/α-Al2O3 and Ni/La2O3-αAl2O3 for hydrogen production by steam reforming of bio-oil aqueous fraction with pyrolytic lignin retention
    Valle, Beatriz
    Remiro, Aingeru
    Aguayo, Andres T.
    Bilbao, Javier
    Gayubo, Ana G.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (03) : 1307 - 1318
  • [48] Ni-Co bimetallic MgO-based catalysts for hydrogen production via steam reforming of acetic acid from bio-oil
    Zhang, Fangbai
    Wang, Ning
    Yang, Lu
    Li, Mao
    Huang, Lihong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (32) : 18688 - 18694
  • [49] Research of the combined reforming of bio-oil model compound for hydrogen production
    Xu, Qingli
    Feng, Peng
    Huang, Kai
    Xin, Shanzhi
    Wei, Ting
    Liao, Lifang
    Yan, Yongjie
    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2020, 39 (02)
  • [50] Ni/Y2O3-ZrO2 catalyst for hydrogen production through the glycerol steam reforming reaction
    Charisiou, N. D.
    Siakavelas, G.
    Tzounis, L.
    Dou, B.
    Sebastian, V.
    Hinder, S. J.
    Baker, M. A.
    Polychronopoulou, K.
    Goula, M. A.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (17) : 10442 - 10460