Perturbation Theory for Parent Hamiltonians of Matrix Product States

被引:0
|
作者
Oleg Szehr
Michael M. Wolf
机构
[1] Technische Universität München,Zentrum Mathematik
[2] University of Cambridge,DAMTP
来源
关键词
Matrix product states; Parent Hamiltonian model; Stability of spectral gap; Quantum Markov chain;
D O I
暂无
中图分类号
学科分类号
摘要
This article investigates the stability of the ground state subspace of a canonical parent Hamiltonian of a Matrix product state against local perturbations. We prove that the spectral gap of such a Hamiltonian remains stable under weak local perturbations even in the thermodynamic limit, where the entire perturbation might not be bounded. Our discussion is based on preceding work by Yarotsky that develops a perturbation theory for relatively bounded quantum perturbations of classical Hamiltonians. We exploit a renormalization procedure, which on large scale transforms the parent Hamiltonian of a Matrix product state into a classical Hamiltonian plus some perturbation. We can thus extend Yarotsky’s results to provide a perturbation theory for parent Hamiltonians of Matrix product states and recover some of the findings of the independent contributions (Cirac et al in Phys Rev B 8(11):115108, 2013) and (Michalakis and Pytel in Comm Math Phys 322(2):277–302, 2013).
引用
收藏
页码:752 / 771
页数:19
相关论文
共 50 条
  • [41] Perturbation Theory of KMS States
    Ejima, S.
    Ogata, Y.
    ANNALES HENRI POINCARE, 2019, 20 (09): : 2971 - 2986
  • [42] Random Tensor Theory: Extending Random Matrix Theory to Mixtures of Random Product States
    Andris Ambainis
    Aram W. Harrow
    Matthew B. Hastings
    Communications in Mathematical Physics, 2012, 310 : 25 - 74
  • [43] Perturbation Theory of KMS States
    S. Ejima
    Y. Ogata
    Annales Henri Poincaré, 2019, 20 : 2971 - 2986
  • [44] Overlaps for matrix product states of arbitrary bond dimension in ABJM theory
    Gombor, T.
    Kristjansen, C.
    PHYSICS LETTERS B, 2022, 834
  • [45] Dicke states as matrix product states
    Raveh, David
    Nepomechie, Rafael I.
    PHYSICAL REVIEW A, 2024, 110 (05)
  • [46] Effective Hamiltonians for degenerate and quasidegenerate direct perturbation theory of relativistic effects
    Kutzelnigg, W
    JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (17): : 8283 - 8294
  • [47] Notes on density matrix perturbation theory
    Truflandier, Lionel A.
    Dianzinga, Rivo M.
    Bowler, David R.
    JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (16):
  • [48] Canonical density matrix perturbation theory
    Niklasson, Anders M. N.
    Cawkwell, M. J.
    Rubensson, Emanuel H.
    Rudberg, Elias
    PHYSICAL REVIEW E, 2015, 92 (06)
  • [49] Nonlinear Perturbation of Random Matrix Theory
    Frahm, Klaus M.
    Shepelyansky, Dima L.
    PHYSICAL REVIEW LETTERS, 2023, 131 (07)
  • [50] LIVSIC MATRIX IN PERTURBATION-THEORY
    HOWLAND, JS
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1975, 50 (02) : 415 - 437