Equalities and inequalities for ranks of products of generalized inverses of two matrices and their applications

被引:0
|
作者
Yongge Tian
机构
[1] Central University of Finance and Economics,China Economics and Management Academy
关键词
matrix product; generalized inverse; reverse-order law; rank; equality; inequality; 15A03; 15A09; 15A24;
D O I
暂无
中图分类号
学科分类号
摘要
A complex matrix X is called an {i,…,j}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{i,\ldots, j\}$\end{document}-inverse of the complex matrix A, denoted by A(i,…,j)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A^{(i,\ldots, j)}$\end{document}, if it satisfies the ith, …, jth equations of the four matrix equations (i) AXA=A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$AXA = A$\end{document}, (ii) XAX=X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$XAX=X$\end{document}, (iii) (AX)∗=AX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(AX)^{*} = AX$\end{document}, (iv) (XA)∗=XA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(XA)^{*} = XA$\end{document}. The eight frequently used generalized inverses of A are A†\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A^{\dagger}$\end{document}, A(1,3,4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A^{(1,3,4)}$\end{document}, A(1,2,4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A^{(1,2,4)}$\end{document}, A(1,2,3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A^{(1,2,3)}$\end{document}, A(1,4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A^{(1,4)}$\end{document}, A(1,3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A^{(1,3)}$\end{document}, A(1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A^{(1,2)}$\end{document}, and A(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A^{(1)}$\end{document}. The {i,…,j}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{i,\ldots, j\}$\end{document}-inverse of a matrix is not necessarily unique and their general expressions can be written as certain linear or quadratic matrix-valued functions that involve one or more variable matrices. Let A and B be two complex matrices such that the product AB is defined, and let A(i,…,j)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A^{(i,\ldots ,j)}$\end{document} and B(i,…,j)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{(i,\ldots,j)}$\end{document} be the {i,…,j}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{i,\ldots, j\}$\end{document}-inverses of A and B, respectively. A prominent problem in the theory of generalized inverses is concerned with the reverse-order law (AB)(i,…,j)=B(i,…,j)A(i,…,j)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(AB)^{(i,\ldots,j)} = B^{(i,\ldots,j)}A^{(i,\ldots,j)}$\end{document}. Because the reverse-order products B(i,…,j)A(i,…,j)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{(i,\ldots,j)}A^{(i,\ldots,j)}$\end{document} are usually not unique and can be written as linear or nonlinear matrix-valued functions with one or more variable matrices, the reverse-order laws are in fact linear or nonlinear matrix equations with multiple variable matrices. Thus, it is a tremendous and challenging work to establish necessary and sufficient conditions for all these reverse-order laws to hold. In order to make sufficient preparations in characterizing the reverse-order laws, we study in this paper the algebraic performances of the products B(i,…,j)A(i,…,j)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{(i,\ldots,j)}A^{(i,\ldots,j)}$\end{document}. We first establish 126 analytical formulas for calculating the global maximum and minimum ranks of B(i,…,j)A(i,…,j)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{(i,\ldots,j)}A^{(i,\ldots,j)}$\end{document} for the eight frequently used {i,…,j}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{i,\ldots, j\}$\end{document}-inverses of matrices A(i,…,j)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A^{(i,\ldots,j)}$\end{document} and B(i,…,j)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{(i,\ldots,j)}$\end{document}, and then use the rank formulas to characterize a variety of algebraic properties of these matrix products.
引用
收藏
相关论文
共 50 条
  • [41] On generalized inverses of fuzzy matrices
    Majumder, DD
    Rao, PSSNVP
    IETE JOURNAL OF RESEARCH, 1998, 44 (4-5) : 149 - 159
  • [42] GENERALIZED INVERSES OF BOOLEAN MATRICES
    RAO, PSSNVP
    RAO, KPSB
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 11 (02) : 135 - 153
  • [43] GENERALIZED INVERSES OF INTEGRAL MATRICES
    SPRINGER, J
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1987, 67 (10): : 503 - 506
  • [44] GENERALIZED INVERSES OF PARTITIONED MATRICES
    BHIMASANKARAM, P
    SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1971, 33 (SEP): : 311 - 314
  • [45] GENERALIZED SOLUTIONS OF RICCATI EQUALITIES AND INEQUALITIES
    Arov, D. Z.
    Kaashoek, M. A.
    Pik, D. R.
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2016, 22 (02): : 95 - 116
  • [46] On Generalized Inverses of Fuzzy Matrices
    Majumder, Dwijesh Dutta
    Rao, P.S.S.N.V.P.
    IETE Journal of Research, 44 (4--5): : 149 - 159
  • [47] PETRIE MATRICES AND GENERALIZED INVERSES
    ARONOWITZ, S
    EICHINGER, BE
    JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (06) : 1278 - 1283
  • [48] Matrices with signed generalized inverses
    Shao, JY
    Shan, HY
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 322 (1-3) : 105 - 127
  • [49] GENERALIZED INVERSES OF TRIANGULAR MATRICES
    MEYER, CD
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1970, 18 (02) : 401 - &
  • [50] GENERALIZED INVERSES OF SUBSTOCHASTIC MATRICES
    ROBINSON, CE
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 91 : 89 - 98