Low Complexity Algorithmic Trading by Feedforward Neural Networks

被引:0
|
作者
J. Levendovszky
I. Reguly
A. Olah
A. Ceffer
机构
[1] Budapest University of Technology,Department of Networked Systems and Services
[2] Pázmány Péter Catholic University,Faculty of Information Technology and Bionics
来源
Computational Economics | 2019年 / 54卷
关键词
Neural networks; Non-linear regression; Estimation; Algorithmic trading; G1 – General Financial Markets; G12 – Asset Pricing;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, novel neural based algorithms are developed for electronic trading on financial time series. The proposed method is estimation based and trading actions are carried out after estimating the forward conditional probability distribution. The main idea is to introduce special encoding schemes on the observed prices in order to obtain an efficient estimation of the forward conditional probability distribution performed by a feedforward neural network. Based on these estimations, a trading signal is launched if the probability of price change becomes significant which is measured by a quadratic criterion. The performance analysis of our method tested on historical time series (NASDAQ/NYSE stocks) has demonstrated that the algorithm is profitable. As far as high frequency trading is concerned, the algorithm lends itself to GPU implementation, which can considerably increase its performance when time frames become shorter and the computational time tends to be the critical aspect of the algorithm.
引用
收藏
页码:267 / 279
页数:12
相关论文
共 50 条
  • [31] Oscillation Characteristics of Feedforward Neural Networks
    Li, Yudi
    Wu, Aiguo
    Dong, Na
    Du, Lijia
    Chai, Yi
    2018 13TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2018, : 1074 - 1079
  • [32] Randomized Algorithms for Feedforward Neural Networks
    Li Fan-jun
    Li Ying
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 3664 - 3668
  • [33] Algorithmic Trading
    Nuti, Giuseppe
    Mirghaemi, Mahnoosh
    Treleaven, Philip
    Yingsaeree, Chaiyakorn
    COMPUTER, 2011, 44 (11) : 61 - 69
  • [34] Algorithmic trading
    Bates, John
    DR DOBBS JOURNAL, 2007, 32 (04): : 18 - +
  • [35] Feedforward neural networks without orthonormalization
    Chen, Lei
    Pung, Hung Keng
    Long, Fei
    ICEIS 2007: PROCEEDINGS OF THE NINTH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS: ARTIFICIAL INTELLIGENCE AND DECISION SUPPORT SYSTEMS, 2007, : 420 - 423
  • [36] Feedforward neural networks for compound signals
    Szczuka, Marcin
    Slezak, Dominik
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (42) : 5960 - 5973
  • [37] Channel equalization by feedforward neural networks
    Lu, B
    Evans, BL
    ISCAS '99: PROCEEDINGS OF THE 1999 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 5: SYSTEMS, POWER ELECTRONICS, AND NEURAL NETWORKS, 1999, : 587 - 590
  • [38] Interpolation functions of feedforward neural networks
    Li, HX
    Lee, ES
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2003, 46 (12) : 1861 - 1874
  • [39] Global Optimization of Feedforward Neural Networks
    LIANG Xun XIA Shaowei Department of Automation
    Journal of Systems Science and Systems Engineering, 1993, (03) : 273 - 280
  • [40] Injecting Chaos in Feedforward Neural Networks
    Sultan Uddin Ahmed
    Md. Shahjahan
    Kazuyuki Murase
    Neural Processing Letters, 2011, 34 : 87 - 100