Effects of Zn, Cu, and K Promoters on the Structure and on the Reduction, Carburization, and Catalytic Behavior of Iron-Based Fischer–Tropsch Synthesis Catalysts

被引:1
|
作者
Senzi Li
Anwu Li
Sundaram Krishnamoorthy
Enrique Iglesia
机构
[1] University of California,Department of Chemical Engineering
来源
Catalysis Letters | 2001年 / 77卷
关键词
Fischer–Tropsch synthesis; promoters; iron; carbide; copper; potassium; zinc;
D O I
暂无
中图分类号
学科分类号
摘要
Zn, K, and Cu effects on the structure and surface area and on the reduction, carburization, and catalytic behavior of Fe–Zn and Fe oxides used as precursors to Fischer–Tropsch synthesis (FTS) catalysts, were examined using X-ray diffraction, kinetic studies of their reactions with H2 or CO, and FTS reaction rate measurements. Fe2O3 precursors initially reduce to Fe3O4 and then to metallic Fe (in H2) or to a mixture of Fe2.5C and Fe3C (in CO). Zn, present as ZnFe2O4, increases the surface area of precipitated oxide precursors by inhibiting sintering during thermal treatment and during activation in H2/CO reactant mixtures, leading to higher FTS rates than on ZnO-free precursors. ZnFe2O4 species do not reduce to active FTS structures, but lead instead to the loss of active components; as a result, maximum FTS rates are achieved at intermediate Zn/Fe atomic ratios. Cu increases the rate of Fe2O3 reduction to Fe3O4 by providing H2 dissociation sites. Potassium increases CO activation rates and increases the rate of carburization of Fe3O4. In this manner, Cu and K promote the nucleation of oxygen-deficient FeOx species involved as intermediate inorganic structures in reduction and carburization of Fe2O3 and decrease the ultimate size of the Fe oxide and carbide structures formed during activation in synthesis gas. As a result, Cu and K increase FTS rates on catalysts formed from Fe–Zn oxide precursors. Cu increases CH4 and the paraffin content in FTS products, but the additional presence of K inhibits these effects. Potassium titrates residual acid and hydrogenation sites and increases the olefin content and molecular weight of FTS products. K increases the rate of secondary water–gas shift reactions, while Cu increases the relative rate of oxygen removal as CO2 instead of water after CO is dissociated in FTS elementary steps. Through these two different mechanisms, K and Cu both increase CO2 selectivities during FTS reactions on catalysts based on Fe–Zn oxide precursors.
引用
收藏
页码:197 / 205
页数:8
相关论文
共 50 条
  • [31] Effects of pretreatment on iron-based catalysts for forming light olefins via Fischer–Tropsch synthesis
    Yi Liu
    Jian-Feng Chen
    Yi Zhang
    Reaction Kinetics, Mechanisms and Catalysis, 2015, 114 : 433 - 449
  • [32] Effects of alkali on iron-based catalysts for Fischer-Tropsch synthesis: CO chemisorptions study
    Li, Jifan
    Cheng, Xiaofan
    Zhang, Chenghua
    Yang, Yong
    Li, Yongwang
    Journal of Molecular Catalysis A: Chemical, 2015, 396 : 174 - 180
  • [33] Effects of alkali on iron-based catalysts for Fischer-Tropsch synthesis: CO chemisorptions study
    Li, Jifan
    Cheng, Xiaofan
    Zhang, Chenghua
    Yang, Yong
    Li, Yongwang
    JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2015, 396 : 174 - 180
  • [34] Effects of Potassium Loading over Iron-Silica Interaction, Phase Evolution and Catalytic Behavior of Precipitated Iron-Based Catalysts for Fischer-Tropsch Synthesis
    Chang, Hai
    Lin, Quan
    Cheng, Meng
    Zhang, Kui
    Feng, Bo
    Chai, Jiachun
    Lv, Yijun
    Men, Zhuowu
    CATALYSTS, 2022, 12 (08)
  • [35] Review of Iron-Based Catalysts for Carbon Dioxide Fischer-Tropsch Synthesis
    Jia, Ji-Yue
    Shan, Yu-Ling
    Tuo, Yong-Xiao
    Yan, Hao
    Feng, Xiang
    Chen, De
    TRANSACTIONS OF TIANJIN UNIVERSITY, 2024, 30 (02) : 178 - 197
  • [36] IRON-BASED CATALYSTS FOR SLURRY-PHASE FISCHER-TROPSCH SYNTHESIS
    RAO, VUS
    STIEGEL, GJ
    BOSE, AC
    CINQUEGRANE, GJ
    SRIVASTAVA, RD
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1992, 203 : 26 - FUEL
  • [37] Review of Iron-Based Catalysts for Carbon Dioxide Fischer-Tropsch Synthesis
    Ji-Yue Jia
    Yu-Ling Shan
    Yong-Xiao Tuo
    Hao Yan
    Xiang Feng
    De Chen
    Transactions of Tianjin University, 2024, (02) : 178 - 197
  • [38] Microfibrous entrapped hybrid iron-based catalysts for Fischer-Tropsch synthesis
    Cheng, Xinquan
    Yang, Hongyun
    Tatarchuk, Bruce J.
    CATALYSIS TODAY, 2016, 273 : 62 - 71
  • [39] Fischer-Tropsch Synthesis: Effect of Water Over Iron-Based Catalysts
    Pendyala, Venkat Ramana Rao
    Jacobs, Gary
    Mohandas, Janet C.
    Luo, Mingsheng
    Hamdeh, Hussein H.
    Ji, Yaying
    Ribeiro, Mauro C.
    Davis, Burtron H.
    CATALYSIS LETTERS, 2010, 140 (3-4) : 98 - 105
  • [40] Exploring Iron-based Multifunctional Catalysts for Fischer-Tropsch Synthesis: A Review
    Abello, Sonia
    Montane, Daniel
    CHEMSUSCHEM, 2011, 4 (11) : 1538 - 1556