Pfaffian definitions of Weierstrass elliptic functions

被引:0
|
作者
Gareth Jones
Harry Schmidt
机构
[1] University of Manchester,School of Mathematics
[2] Departement Mathematik und Informatik,undefined
来源
Mathematische Annalen | 2021年 / 379卷
关键词
Primary 30E05; 14P10; Secondary 11F03; 03C64;
D O I
暂无
中图分类号
学科分类号
摘要
We give explicit definitions of the Weierstrass elliptic functions ℘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\wp $$\end{document} and ζ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta $$\end{document} in terms of pfaffian functions, with complexity independent of the lattice involved. We also give such a definition for a modification of the Weierstrass function σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}. Our work has immediate applications to Diophantine geometry and we answer a question of Corvaja, Masser and Zannier on additive extensions of elliptic curves. We also point out further applications, also in connection with Pila–Wilkie type counting problems.
引用
收藏
页码:825 / 864
页数:39
相关论文
共 50 条