Pfaffian definitions of Weierstrass elliptic functions

被引:0
|
作者
Gareth Jones
Harry Schmidt
机构
[1] University of Manchester,School of Mathematics
[2] Departement Mathematik und Informatik,undefined
来源
Mathematische Annalen | 2021年 / 379卷
关键词
Primary 30E05; 14P10; Secondary 11F03; 03C64;
D O I
暂无
中图分类号
学科分类号
摘要
We give explicit definitions of the Weierstrass elliptic functions ℘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\wp $$\end{document} and ζ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta $$\end{document} in terms of pfaffian functions, with complexity independent of the lattice involved. We also give such a definition for a modification of the Weierstrass function σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}. Our work has immediate applications to Diophantine geometry and we answer a question of Corvaja, Masser and Zannier on additive extensions of elliptic curves. We also point out further applications, also in connection with Pila–Wilkie type counting problems.
引用
收藏
页码:825 / 864
页数:39
相关论文
共 50 条
  • [1] Pfaffian definitions of Weierstrass elliptic functions
    Jones, Gareth
    Schmidt, Harry
    MATHEMATISCHE ANNALEN, 2021, 379 (1-2) : 825 - 864
  • [2] LOCAL INTERDEFINABILITY OF WEIERSTRASS ELLIPTIC FUNCTIONS
    Jones, Gareth
    Kirby, Jonathan
    Servi, Tamara
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2016, 15 (04) : 673 - 691
  • [3] Sharp estimates for weierstrass elliptic functions
    D. W. Masser
    Journal d’Analyse Mathématique, 2003, 90 : 257 - 302
  • [4] Sharp estimates for Weierstrass elliptic functions
    Masser, DW
    JOURNAL D ANALYSE MATHEMATIQUE, 2003, 90 (1): : 257 - 302
  • [6] DETERMINANTAL REPRESENTATIONS OF ELLIPTIC CURVES VIA WEIERSTRASS ELLIPTIC FUNCTIONS
    Chien, Mao-Ting
    Nakazato, Hiroshi
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2018, 34 : 125 - 136
  • [8] ON THE ASTRODYNAMICS APPLICATIONS OF WEIERSTRASS ELLIPTIC AND RELATED FUNCTIONS
    Izzo, Dario
    Biscani, Francesco
    SPACEFLIGHT MECHANICS 2016, PTS I-IV, 2016, 158 : 2389 - 2410
  • [9] Kerr geodesics in terms of Weierstrass elliptic functions
    Cieslik, Adam
    Hackmann, Eva
    Mach, Patryk
    PHYSICAL REVIEW D, 2023, 108 (02)
  • [10] WEIERSTRASS ELLIPTIC FUNCTIONS [S21]
    ECKHARDT, U
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1980, 6 (01): : 112 - 120